"

6

Composition of an Atom

The development of the modern atomic theory revealed much about the inner structure of atoms. It was learned that an atom contains a very small nucleus composed of positively charged protons and uncharged neutrons, surrounded by a much larger volume of space containing negatively charged electrons. The nucleus contains the majority of an atom’s mass because protons and neutrons are much heavier than electrons, whereas electrons occupy almost all of an atom’s volume. The diameter of an atom is on the order of 10−10 m, whereas the diameter of the nucleus is roughly 10−15 m—about 100,000 times smaller. For a perspective about their relative sizes, consider this: If the nucleus were the size of a blueberry, the atom would be about the size of a football stadium (Figure 1).

The diagram on the left shows a picture of an atom that is 10 to the negative tenth power meters in diameter. The nucleus is labeled at the center of the atom and is 10 to the negative fifteenth power meters. The central figure shows a photograph of an American football stadium. The figure on the right shows a photograph of a person with a handful of blueberries.
If an atom could be expanded to the size of a football stadium, the nucleus would be the size of a single blueberry. (credit middle: modification of work by “babyknight”/Wikimedia Commons; credit right: modification of work by Paxson Woelber)

Atoms—and the protons, neutrons and electrons that compose them—are extremely small. For example, a carbon atom weighs less than 2 × 10−23 g and an electron has a charge of less than 2 × 10−19 C (coulomb). When describing the properties of tiny objects such as atoms, we use appropriately small units of measure, such as the atomic mass unit (amu) and the fundamental unit of charge (e). The amu was originally defined based on hydrogen, the lightest element, then later in terms of oxygen. Since 1961, it has been defined with regard to the most abundant isotope of carbon, atoms of which are assigned masses of exactly 12 amu. This isotope is known as “carbon-12” as will be discussed later in this module. Thus, one amu is exactly \frac{1}{12} of the mass of one carbon-12 atom: 1 amu = 1.6605 × 10−24 g.  The fundamental unit of charge (also called the elementary charge) equals the magnitude of the charge of an electron (e) with e = 1.602 ×10−19 C.

A proton has a mass of 1.0073 amu and a charge of 1+. A neutron is a slightly heavier particle with a mass 1.0087 amu and a charge of zero; as its name suggests, it is neutral. The electron has a charge of 1− and is a much lighter particle with a mass of about 0.00055 amu. It would take about 1800 electrons to equal the mass of one proton. The properties of these fundamental particles are summarized in Table 1. An observant student might notice that the sum of an atom’s subatomic particles does not equal the atom’s actual mass: The total mass of six protons, six neutrons and six electrons is 12.0993 amu, slightly larger than 12.00 amu. This “missing” mass is known as the mass defect, and you will learn about it in the chapter on nuclear chemistry.

Properties of Subatomic Particles
Name Location Charge (C) Unit Charge Mass (amu) Mass (g)
electron outside nucleus −1.602 × 10−19 1− 0.00055 0.00091 × 10−24
proton nucleus 1.602 × 10−19 1+ 1.00727 1.67262 × 10−24
neutron nucleus 0 0 1.00866 1.67493 × 10−24

The number of protons in the nucleus of an atom is its atomic number (Z). This is the defining trait of an element: Its value determines the identity of the atom. For example, any atom that contains six protons is the element carbon and has the atomic number 6, regardless of how many neutrons or electrons it may have. A neutral atom must contain the same number of positive and negative charges, so the number of protons equals the number of electrons. The total number of protons and neutrons in an atom is called its mass number (A). The number of neutrons is therefore the difference between the mass number and the atomic number: A – Z = number of neutrons.

    \begin{equation*} \begin{align} \text{atomic number (Z)} &= \text{number of protons} \\ \text{mass number (A)} &= \text{number of protons} + \text{number of neutrons} \\ \text{A} - \text{Z} &= \text{number of neutrons} \\ \end{align} \end{equation*}

Atoms are electrically neutral if they contain the same number of positively charged protons and negatively charged electrons. When the numbers of these subatomic particles are not equal, the atom is electrically charged and is called an ion. The charge of an atom is defined as follows:

Atomic charge = number of protons − number of electrons

As will be discussed in more detail later in this chapter, atoms (and molecules) typically acquire a charge by gaining or losing electrons. An atom that gains one or more electrons will exhibit a negative charge and is called an anion. Positively charged atoms called cations are formed when an atom loses one or more electrons. For example, a neutral sodium atom (Z = 11) has 11 protons and 11 electrons. If this atom loses one electron, it will become a cation with a 1+ charge (11 − 10 = 1+). A neutral oxygen atom (Z = 8) has eight protons and electrons, if it gains two electrons it will become an anion with a 2− charge (8 − 10 = 2−).

 

Iodine is an essential trace element in our diet; it is needed to produce thyroid hormone. Insufficient iodine in the diet can lead to the development of a goiter, an enlargement of the thyroid gland (Figure 2).

Figure A shows a photo of a person who has a very swollen thyroid in his or her neck. Figure B shows a photo of a canister of iodized salt.
(a) Insufficient iodine in the diet can cause an enlargement of the thyroid gland called a goiter. (b) The addition of small amounts of iodine to salt, which prevents the formation of goiters, has helped eliminate this concern in the US where salt consumption is high. (credit a: modification of work by “Almazi”/Wikimedia Commons; credit b: modification of work by Mike Mozart)

The addition of small amounts of iodine to table salt (iodized salt) has essentially eliminated this health concern in the United States, but as much as 40% of the world’s population is still at risk of iodine deficiency. The iodine atoms are added as anions and each has a 1− charge and a mass number of 127.

Check Your Learning

Determine the numbers of protons, neutrons, and electrons in one of these iodine anions.

Answer

The atomic number of iodine (53) tells us that a neutral iodine atom contains 53 protons in its nucleus and 53 electrons outside its nucleus. Because the sum of the number of protons and neutrons equals the mass number (127), the number of neutrons is 74 (127 − 53 = 74). Since the iodine is added as a 1− anion, the number of electrons is 54 [53 – (1–) = 54].

Check Your Learning

An ion of platinum has a mass number of 195 and contains 74 electrons. How many protons and neutrons does it contain, and what is its charge?

Answer

78 protons; 117 neutrons; charge is 4+

Chemical Symbols

A chemical symbol is an abbreviation that we use to indicate an element or an atom of an element. For example, the symbol for mercury is Hg (Figure 3). We use the same symbol to indicate one atom of mercury (microscopic domain) or to label a container of many atoms of the element mercury (macroscopic domain).

A jar labeled “H g” is shown with a small amount of liquid mercury in it.
The symbol Hg represents the element mercury regardless of the amount; it could represent one atom of mercury or a large amount of mercury.

The symbols for several common elements and their atoms are listed in Table 2. Some symbols are derived from the common name of the element; others come  from the name in another language (usually Latin). Symbols have one or two letters. To avoid confusion with other notations, only the first letter of a symbol is capitalized. For example, Co is the symbol for the element cobalt, but CO is the formula for the compound carbon monoxide, which contains atoms of the elements carbon (C) and oxygen (O). All known elements and their symbols are in the periodic table.

Some Common Elements and Their Symbols
Element Symbol Element Symbol
aluminum Al iron Fe (from ferrum)
bromine Br lead Pb (from plumbum)
calcium Ca magnesium Mg
carbon C mercury Hg (from hydrargyrum)
chlorine Cl nitrogen N
chromium Cr oxygen O
cobalt Co potassium K (from kalium)
copper Cu (from cuprum) silicon Si
fluorine F silver Ag (from argentum)
gold Au (from aurum) sodium Na (from natrium)
helium He sulfur S
hydrogen H tin Sn (from stannum)
iodine I zinc Zn

Traditionally, the discoverer(s) of a new element names the element. However, until the name is recognized by the International Union of Pure and Applied Chemistry (IUPAC), the recommended name of the new element is based on the Latin word(s) for its atomic number. For example, element 106 was called unnilhexium (Unh), element 107 was called unnilseptium (Uns), and element 108 was called unniloctium (Uno) for several years. These elements are now named after scientists (or occasionally locations); for example, element 106 is now known as seaborgium (Sg) in honor of Glenn Seaborg, a Nobel Prize winner who was active in the discovery of several heavy elements.

Isotopes

The symbol for a specific isotope of any element is written by placing the mass number as a superscript to the left of the element symbol (Figure 4). The atomic number is sometimes written as a subscript also on the left of the symbol. However, since this number defines the element’s identity, as does its symbol, it is often omitted. For example, magnesium exists as a mixture of three isotopes, each with an atomic number of 12 and with mass numbers of 24, 25 and 26, respectively. These isotopes can be identified as 24Mg, 25Mg and 26Mg. These isotope symbols are read as “element, mass number” and can be symbolized consistent with this reading. For instance, 24Mg is read as “magnesium 24,” and can be written as “magnesium-24” or “Mg-24.” 25Mg is read as “magnesium 25,” and can be written as “magnesium-25” or “Mg-25.” All magnesium atoms have 12 protons in their nucleus. They differ only because a 24Mg atom has 12 neutrons in its nucleus, a 25Mg atom has 13 neutrons and a 26Mg atom has 14 neutrons.

This diagram shows the symbol for helium, “H e.” The number to the upper left of the symbol is the mass number, which is 4. The number to the upper right of the symbol is the charge which is positive 2. The number to the lower left of the symbol is the atomic number, which is 2. This number is often omitted. Also shown is “M g” which stands for magnesium It has a mass number of 24, a charge of positive 2, and an atomic number of 12.
The symbol for an atom indicates the element via its usual two-letter symbol, the mass number as a left superscript, the atomic number as a left subscript (sometimes omitted) and the charge as a right superscript.

Information about the naturally occurring isotopes of elements with atomic numbers 1 through 10 is given in Table 3. Note that in addition to standard names and symbols, the isotopes of hydrogen are often referred to using common names and accompanying symbols. Hydrogen-2, symbolized 2H, is also called deuterium and sometimes symbolized D. Hydrogen-3, symbolized 3H, is also called tritium and sometimes symbolized T.

Nuclear Compositions of Atoms of the Very Light Elements
Element Symbol Atomic Number Number of Protons Number of Neutrons Mass (amu) % Natural Abundance
hydrogen _{1}^{1}\text{H} (protium) 1 1 0 1.0078 99.989
_{1}^{2}\text{H} (deuterium) 1 1 1 2.0141 0.0115
_{1}^{3}\text{H} (tritium) 1 1 2 3.01605 (trace amounts)
helium _{2}^{3}\text{He} 2 2 1 3.01603 0.00013
_{2}^{4}\text{He} 2 2 2 4.0026 100
lithium _{3}^{6}\text{Li} 3 3 3 6.0151 7.59
_{3}^{7}\text{Li} 3 3 4 7.0160 92.41
beryllium _{4}^{9}\text{Be} 4 4 5 9.0122 100
boron ^{10}_{ 5}\text{B} 5 5 5 10.0129 19.9
_{ 5}^{11}\text{B} 5 5 6 11.0093 80.1
carbon _{6}^{12}\text{C} 6 6 6 12.0000 98.89
_{6}^{13}\text{C} 6 6 7 13.0034 1.11
_{6}^{14}\text{C} 6 6 8 14.0032 (trace amounts)
nitrogen _{7}^{14}\text{N} 7 7 7 14.0031 99.63
_{7}^{15}\text{N} 7 7 8 15.0001 0.37
oxygen _{8}^{16}\text{O} 8 8 8 15.9949 99.757
_{8}^{17}\text{O} 8 8 9 16.9991 0.038
_{8}^{18}\text{O} 8 8 10 17.9992 0.205
fluorine _{9}^{19}\text{F} 9 9 10 18.9984 100
neon _{10}^{20}\text{Ne} 10 10 10 19.9924 90.48
_{10}^{21}\text{Ne} 10 10 11 20.9938 0.27
_{10}^{22}\text{Ne} 10 10 12 21.9914 9.25

Atomic Mass

The atomic mass of a single atom is approximately equal to its mass number (a whole number) due to the mass of each proton and each neutron contributing approximately one amu each to an atom, while each electron contributes far less. However, the average masses of atoms of most elements are not whole numbers because most elements exist naturally as mixtures of two or more isotopes.

The mass of an element shown in a periodic table or listed in a table of atomic masses is a weighted-average mass of all the isotopes present in a naturally occurring sample of that element. This is equal to the sum of each individual isotope’s mass multiplied by its fractional abundance.

In case you are wondering

MASS SPECTROMETRY
The occurrence and natural abundances of isotopes can be experimentally determined using an instrument called a mass spectrometer. Mass spectrometry (MS) is widely used in chemistry, forensics, medicine, environmental science, and many other fields to analyze and help identify the substances in a sample of material. In a typical mass spectrometer (Figure 5), the sample is vaporized and exposed to a high-energy electron beam that causes the sample’s atoms (or molecules) to become electrically charged, typically by losing one or more electrons. These cations then pass through a (variable) electric or magnetic field that deflects each cation’s path to an extent that depends on both its mass and charge (similar to how the path of a large steel ball bearing rolling past a magnet is deflected to a lesser extent that that of a small steel BB). The ions are detected, and a plot of the relative number of ions generated versus their mass-to-charge ratios (a mass spectrum) is made. The height of each vertical feature or peak in a mass spectrum is proportional to the fraction of cations with the specified mass-to-charge ratio. Since its initial use during the development of modern atomic theory, MS has evolved to become a powerful tool for chemical analysis in a wide range of applications.

The left diagram shows how a mass spectrometer works, which is primarily a large tube that bends downward at its midpoint. The sample enters on the left side of the tube. A heater heats the sample, causing it to vaporize. The sample is also hit with a beam of electrons as it is being vaporized. Charged particles from the sample, called ions, are then accelerated and pass between two magnets. The magnetic field deflects the lightest ions most. The deflection of the ions is measured by a detector located on the right side of the tube. The graph to the right of the spectrometer shows a mass spectrum of zirconium. The relative abundance, as a percentage from 0 to 100, is graphed on the y axis, and the mass to charge ratio is graphed on the x axis. The sample contains five different isomers of zirconium. Z R 90, which has a mass to charge ratio of 90, is the most abundant isotope at about 51 percent relative abundance. Z R 91 has a mass to charge ratio of 91 and a relative abundance of about 11 percent. Z R 92 has a mass to charge ratio of 92 and a relative abundance of about 18 percent. Z R 94 has a mass to charge ratio of 94 and a relative abundance of about 18 percent. Z R 96, which has a mass to charge ratio of 96, is the least abundant zirconium isotope with a relative abundance of about 2 percent.
Analysis of zirconium in a mass spectrometer produces a mass spectrum with peaks showing the different isotopes of Zr.

Chemistry End of Chapter Exercises

1.   In what way are isotopes of a given element always different? In what way(s) are they always the same?

 

2.  Write the symbol for each of the following ions:

(a) the ion with a 1+ charge, atomic number 55, and mass number 133

(b) the ion with 54 electrons, 53 protons, and 74 neutrons

(c) the ion with atomic number 15, mass number 31, and a 3− charge

(d) the ion with 24 electrons, 30 neutrons, and a 3+ charge

 

3.  Write the symbol for each of the following ions:

(a) the ion with a 3+ charge, 28 electrons, and a mass number of 71

(b) the ion with 36 electrons, 35 protons, and 45 neutrons

(c) the ion with 86 electrons, 142 neutrons, and a 4+ charge

(d) the ion with a 2+ charge, atomic number 38, and mass number 87

 

4.  Open the Build an Atom simulation and click on the Atom icon.

(a) Pick any one of the first 10 elements that you would like to build and state its symbol.

(b) Drag protons, neutrons, and electrons onto the atom template to make an atom of your element.

(c) State the numbers of protons, neutrons, and electrons in your atom, as well as the net charge and mass number.

(d) Click on “Net Charge” and “Mass Number,” check your answers to (c), and correct, if needed.

(e) Predict whether your atom will be stable or unstable. State your reasoning.

(f) Check the “Stable/Unstable” box. Was your answer to (e) correct? If not, first predict what you can do to make a stable atom of your element, and then do it and see if it works. Explain your reasoning.

 

5.  Open the Build an Atom simulation

(a) Drag protons, neutrons, and electrons onto the atom template to make a neutral atom of Oxygen-16 and give the isotope symbol for this atom.

(b) Now add two more electrons to make an ion and give the symbol for the ion you have created.

 

6.  Open the Build an Atom simulation

(a) Drag protons, neutrons, and electrons onto the atom template to make a neutral atom of Lithium-6 and give the isotope symbol for this atom.

(b) Now remove one electron to make an ion and give the symbol for the ion you have created.

 

7.  Determine the number of protons, neutrons, and electrons in the following isotopes that are used in medical diagnoses:

(a) atomic number 9, mass number 18, charge of 1−

(b) atomic number 43, mass number 99, charge of 7+

(c) atomic number 53, atomic mass number 131, charge of 1−

(d) atomic number 81, atomic mass number 201, charge of 1+

(e) Name the elements in parts (a), (b), (c), and (d).

 

8.  The following are properties of isotopes of two elements that are essential in our diet. Determine the number of protons, neutrons and electrons in each and name them.

(a) atomic number 26, mass number 58, charge of 2+

(b) atomic number 53, mass number 127, charge of 1−

 

9.  Give the number of protons, electrons, and neutrons in neutral atoms of each of the following isotopes:

(a) ^{10}_{ 5}\text{B}

(b) ^{199}_{80}\text{Hg}

(c)  ^{63}_{29}\text{Cu}

(d)  ^{13}_{6}\text{C}

(e)  ^{77}_{34}\text{Se}

10.  Give the number of protons, electrons, and neutrons in neutral atoms of each of the following isotopes:

(a)  ^{7}_{3}\text{Li}

(b)  ^{125}_{52}\text{Te}

(c)  ^{109}_{74}\text{Ag}

(d)  ^{15}_{7}\text{N}

(e)  ^{31}_{15}\text{P}

Glossary

anion
negatively charged atom or molecule (contains more electrons than protons)
atomic mass
average mass of atoms of an element, expressed in amu
atomic mass unit (amu)
(also, unified atomic mass unit, u, or Dalton, Da) unit of mass equal to 112112 of the mass of a 12C atom
atomic number (Z)
number of protons in the nucleus of an atom
cation
positively charged atom or molecule (contains fewer electrons than protons)
chemical symbol
one-, two-, or three-letter abbreviation used to represent an element or its atoms
Dalton (Da)
alternative unit equivalent to the atomic mass unit
fundamental unit of charge
(also called the elementary charge) equals the magnitude of the charge of an electron (e) with e = 1.602 × 10−19 C
ion
electrically charged atom or molecule (contains unequal numbers of protons and electrons)
isotope
same number of protons and different number of neutrons

mass number (A)
sum of the numbers of neutrons and protons in the nucleus of an atom

unified atomic mass unit (u)

alternative unit equivalent to the atomic mass unit

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Chemistry for the Health Sciences Copyright © by Harper College Chemistry Department is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.