
Relational Databases 





Relational Databases 

RON MCFADYEN 



Relational Databases by Ron McFadyen is licensed under a Creative Commons 
Attribution-NonCommercial-ShareAlike 4.0 International License, except where 
otherwise noted. 

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Contents 

Introduction 
Ron McFadyen 

1 

Preface 
Ron McFadyen 

2 

1.   Relational Databases and Microsoft Access 

Ron McFadyen 

5 

2.   Creating Tables 

Ron McFadyen 

27 

3.   Creating Forms 

Ron McFadyen 

53 

4.   Microsoft Access Queries 

Ron McFadyen 

61 

5.   Relationships and Relationship Tools 

Ron McFadyen 

81 

6.   Microsoft Access Queries – Advanced 

Ron McFadyen 

95 

7.   Entity Relationship Modeling 

Ron McFadyen 

144 

8.   Mapping an ERD to a Relational Database 

Ron McFadyen 

180 

9.   Data Definition Language (DDL) 

Ron McFadyen 

188 

10.   Normalization 

Ron McFadyen 

196 



Appendix A: Forms Involving Multiple Tables 
Ron McFadyen 

245 

Appendix B: Supertypes and Subtypes 
Ron McFadyen 

249 



Introduction 
RON MCFADYEN 

Relational Databases and Microsoft Access 
Ron McFadyen (2014-2017) 

Cindy Miller (Revised: 2019) 
This work is licensed under Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 
International Public License. 

Introduction  |  1



Preface 
RON MCFADYEN 

This text is a free introductory text that introduces Microsoft 
Access Office 365 and relational database design. The motivation 
is to support a second-year course on database systems which, to 
the student, is either a service course providing an introduction to 
database concepts, or, as a prerequisite for more advanced study in 
the field. 

Various texts have been used with some success but were felt 
lacking for various reasons such as: (1) being workbook style with 
extensive tutorial lessons, (2) being too focused on a technology, 
(3) having design material that did not fit well with more advanced 
courses, and (3) being so expensive that some students opted not to 
purchase. 

Our second-year course has no prerequisites and is taken by 
students from various disciplines. However, most students are 
registered in either a Computer Science major program or the 
Computer Science minor. Students who enroll in the course obtain: 
(1) a working knowledge of a personal database system (MS Access), 
(2) knowledge of SQL (primarily the Select statement) and (3) 
awareness of concepts and techniques necessary to database 
design. 

Following this course, students can take third- and fourth-year 
courses in the database subject area. The coverage of Entity 
Relationship Modeling in those courses is based on the Chen 
notation – as is usual for academic texts. To be consistent with 
those higher level courses the same approach is used here. 

It is our opinion that many students find normalization theory 
a difficult topic. Many presentations on normal forms are more 
complicated than necessary (e.g. some texts will give more than one 
definition of some normal forms). Our approach has been largely 
motivated by the writings of Chris Date. We have attempted to give 

2  |  Preface



a suitable introduction to normalization theory for the beginning 
database student and to relate that material to other topics such as 
entity relationship diagrams. 

Version 2.0 includes two appendices that cover a) creating forms 
that display data in a parent/child format where two tables are 
related via a one-to-many relationship, and b) entity-relationship 
modeling for supertypes and subtypes. 

Version 3.0 includes revised Microsoft Access Office 365 content 
with improved accessibility to users supporting w3c accessibility 
standards. 

Preface  |  3





1. Relational Databases and 
Microsoft Access 
RON MCFADYEN 

A database is an organized collection of data. A database may be 
on paper or held in computer files such as spreadsheets or more 
formally in a software system known as a computerized database 
management system (for example DB2, db4o, IMS, MS Access, MS 
SQL Server, MySQL, Oracle, Sybase, Total, Versant). In this book, we 
focus on Relational databases and one specific relational database 
system: Microsoft Access. 

There are many different commercial relational database systems 
and what you learn here will assist you in using those others. 
Because Microsoft Access is a workstation/personal system it is a 
convenient system for beginners. 

1.1 Relational Databases 

Relational Databases were introduced by E. F. Codd in 19691; Codd’s 
1970 paper2 is considered one of the great papers in Computer 
Science. 

We begin with a very small example: a database with one relation, 
the list of employees shown in figure 1.1. You should notice this looks 

1. Derivability, Redundancy, and Consistency of Relations 
Stored in Large Data Banks, IBM Research Report, 1969. 

2. A Relational Model of Data for Large Shared Data Banks, 
CACM 13, No. 6, June 1970. 

Relational Databases  |  5



just like a two-dimensional table of rows and columns. The name 
of the table is Employees, each column of the table has its own 
title, and each row has the same structure. Each row has a value 
for employee number, first name, last name, and gender. As tables 
of data appear in so many places (newspaper articles, textbooks, 
web pages, etc.) it is very likely you have seen and used this 
representation for data previously. 

Employees 

Employee ID First Name Last Name Gender 

123 Joe Smith Male 

333 Jim Jones Male 

456 April Smith Female 

842 Jenny Jones Female 

777 Tom Lee Male 

Figure 1.1 A list of employees 
Let us assume the Employees table in figure 1.1 has one row for 

each employee who works for some hypothetical company. Data 
kept for each employee comprises their employee identification 
number, their first and last names, and their gender. Information 
structured in tables is very concise; at a glance, we can obtain useful 
information. 

According to the database design methodology in Information 
Modeling and Relational Databases 3, a database designer must be 

3. Information modeling and relational databases, 2nd 

6  |  Relational Databases



able to express structured information as verbalizations. A 
verbalization that fits the information in one row of the Employees 
table is: 

Employee with ID … has a first name …, a last name …, and 
is of … gender 

In verbalizations like this, the ellipses are placeholders: we can 
use values from a single row to create complete statements that 
explain the meaning of a row. For example, 

Employee with ID 123 has a first name Joe, a last name 
Smith, and is of Male gender 
Employee with ID 333 has a first name Jim, a last name Jones, 
and is of Male gender 

A similar approach to organizing knowledge about data appears in 
the literature on literacy. In the Journal of Reading several articles 
by Kirsch and Mosenthal discuss the organization of information 
and its conceptualization as document sentences. In Building 
Documents by Combining Simple Lists4, Kirsch and Mosenthal 
present an example based on information from The World Almanac 
and Book of Facts: 1980 (Newspaper Enterprise Association, p. 427). 
That data is reproduced in figure 1.2. 

edition, by Terry Halpin and Tony Morgan; Morgan 
Kaufmann Publishers; ISBN -13 978-0-12-373568-3. 

4. Irwin S. Kirsch and Peter B. Mosenthal. Building 
documents by combining simple lists. Journal of Reading, 
Vol. 33, No. 2, pp. 132-134. 

Relational Databases  |  7



Circulation of Leading U.S. Magazines 

Magazines Circulation 

TV Guide 19,547,763 

Reader’s Digest 18,094,192 

National Geographic 10, 249,748 

Better Homes & Gardens 8,007,202 

Family Circle 7,611,578 

Woman ‘s Day 7,535,855 

McCall’s 6,502,880 

Figure 1.2 Circulation of leading U.S. magazines 
A major point the authors make is that such information can 

be re-conceptualized as a series of simple document sentences 
formed from a basic document sentence. This document sentence 
expresses an understanding of the tabular data in natural language. 
The document sentence for figure 1.2 is: 

Magazine X has a circulation of Y. 
Kirsch and Mosenthal use variables (X and Y) to stand for data that 

comes from a table. Taking values from a row, we plug values for X 
and Y into the document sentence to obtain sentence instantiations: 

TV Guide has a circulation of 19,547,763. 
Reader’s Digest has a circulation of 18,094,192. 
National Geographic has a circulation of 10,249,748. 
Better Homes & Gardens has a circulation of 8,007,202. 
Family Circle has a circulation of 7,611,578. 
Woman’s Day has a circulation of 7,535,855. 
McCall’s has a circulation of 6,502,880. 

Document sentences and verbalization sentences are essentially 

8  |  Relational Databases



the same. Both sentences use natural language to express in words 
the meaning of tabular data. Whether one is designing databases or 
reading structured information, it can be useful for understanding 
to re-formulate data as statements in natural language. 

Let us be a bit formal for a moment. 
Commercial relational database systems are systems where data is 
organized into relations. Figure 1.3 shows the general structure of 
a relation. We say a relation comprises a set of tuples where each 
tuple has the same number of attribute values, where each attribute 
value is taken from some corresponding domain, and where a 
domain represents a set of valid values for an attribute. 

Figure 1.3 General structure of a relation 
The Employees table in figure 1.1 can be considered a relation 

of 5 tuples where each tuple has 4 values drawn from each of the 
employee identifier, first name, last name, and gender domains. 

Similarly, we can say the lists comprising the Circulation of 
leading U.S. Magazines in figure 1.2 can be considered a relation 
with 7 tuples each having 2 attribute values. 

Relations are typically implemented in commercial databases as 
tabular structures comprising rows and a fixed number of columns. 
Everybody is familiar with tables as they are commonplace in 
textbooks, papers, magazines, etc. This simplicity of representation 
is one reason why relational databases have been very successful as 
repositories for important data. 

Relational Databases  |  9



1.1 Exercises 

To design a database, a database engineer needs to find good 
representations of how an organization uses data. Good sources 
include: input forms, reports, web pages, etc. A challenge for 
database designers is to find these sources and interpret them. 

1. Consider the following table example of product 
information sold by ABC Foods. Verbalize the information 
presented. 

Product 
ID Product Name Unit 

Price Units In Stock 

1 Black Tea $2.00 44 

2 Green Tea $3.00 33 

3 Vegetarian Lasagne $10.00 20 

4 Cajun Seasoning $11.00 29 

5 Cranberry Sauce $21.00   0 

2. Consider the following report example that the Human 
Resources department of ABC Foods must produce. 
Verbalize the information in that report. 

10  |  Relational Databases



Employee ID First Name Last Name Department 

1 John Smith Receiving 

2 Lee Daniels Sales 

3 April Turner Sales 

4 Thomas Trump Marketing 

5 Lee Smith Marketing 

3. Suppose the following input form example is used to enter 
contact information. Verbalize the information that is 
being collected. 

1.2 Microsoft Access 

Microsoft Access is a relational database system for workstations 
that run the Microsoft Windows operating system. Microsoft Access 
(MS Access) is an integrated Microsoft Office suite application. 
Microsoft Access is typically used by individuals for data they use 
personally, but in some situations, a single MS Access database may 
be used by a group of people or small department. 

Microsoft Access databases are stored in a single file that has a 

Relational Databases  |  11



file suffix of “.accdb” or “.mdb”. Databases created using MS Access 
2007 and later have a file suffix “.accdb”, and databases created using 
MS Access 2003 or earlier have a file suffix “.mdb”. We will be using 
databases where the files have names ending in “.accdb”. You need 
to use MS Access 2007 or later to open these databases. 

This open resources will use Microsoft Office 365 – Access. If 
you are using a different Access version, your version may look 
slightly different. The basic Access functions applying to different 
versions of Access will be similar so you should be able to follow 
along without any problems. 

Our first sample database is in a file named Library.accdb; this 
database is available from the website associated with this text. 
Open the file Library.accdb included in your data files and then save 
the database as Library.accdb onto your storage device. 

To use this database, you must first download the file containing 
the database, and then open the database by double-clicking the file 
name: 

 

Figure 1.4 Double-click the database file to open the sample 
database 

When you open this database you see a list of objects (figure 1.5) 
in the database; you will see three tables: Book, Loan, Member: 

12  |  Relational Databases



Figure 1.5 The Home tab in MS Access shows you the table names 
Double-click a table name and MS Access opens the table 

in Datasheet View; you can see the contents of Book in figure 1.6. 
The datasheet view for a table is easily obtained, but it’s not a 
particularly user-friendly way to view and manage data in a table. 
We will learn other ways of handling data with MS Access Forms. 
The Book table has three fields (i.e. attributes): callNo, title, author. 
When we view a table we see data organized into rows and columns. 
The data in one row corresponds to one book; if there are 11 books, 
then we have a table of 11 rows. 

Figure 1.6 Datasheet View of a table 
The Book table contains one row for each book in the library. We 

can verbalize the content of a row as:  The book identified by call 
number … is titled … and is authored by … 

Substituting actual values from rows we can make explicit 
statements such as: 

Relational Databases  |  13



• The book identified by call number PC 14 V48 1965 is 
titled Medieval miscellany and is authored by Frederick 
Whitehead 

• The book identified by call number QA 76.76 A65P76 2011is 
titled 

• Programming Android and is authored by Zigurd R Mednieks 

Knowing that books are identified by their call number and since the 
above statements use the conjunction ‘and’, the above verbalization 
can be expressed in an elementary form as: 

• The book identified by call number … is titled … 
• The book identified by call number … is authored by … 

Each of these expressions is considered elementary because each 
states one fact about a specific book. We cannot make these 
statements any simpler. 

Of course, we can now substitute values from the table and 
obtain: 

• The book identified by call number PC 14 V48 1965 is 
titled Medieval miscellany 

• The book identified by call number PC 14 V48 1965 is authored 
by Frederick Whitehead 

• The book identified by call number QA 76.76 A65P76 2011 is 
titled Programming Android 

• The book identified by call number QA 76.76 A65P76 2011 is 
authored by Zigurd R Mednieks 

At this point, expressing verbalizations this way may seem trivial 
and unnecessary, but they do serve a purpose. These scenarios 
make it clear that the title and the author’s name serve only to 
describe a book, and that the call number identifies the book. An aim 
of a database designer is to understand data requirements in terms 

14  |  Relational Databases



of these elementary forms. We’ll have more to say about this in a 
later chapter. 

Up to this point, we have learned how to 

• open a Microsoft Access database; 
• recognize that a database contains a number of tables; 
• open a table to display a collection of rows and columns; 
• verbalize the information in a table. 

In the next section, we will examine the basic table features in 
Microsoft Access to insert, modify, and delete data records using 
our sample database named Library.accdb. 

1.2 Exercises 

Recall that an elementary verbalization is one where the 
verbalization cannot be simplified in any further way. Simpler 
statements would result in a loss of information. 

1. Rewrite the verbalization for the Employees table using 
elementary verbalizations. 

2. Is the verbalization given for Circulation of Leading U.S. 
Magazines in elementary form? 

3. What verbalizations apply to the Loan table in the Library 
database? 

4. What verbalizations apply to the Member table in the Library 
database? 

5. View the data in the Loan table. Each row in the table 
corresponds to a member borrowing a book. Notice how the 
call number field contains values that appear in the Book table 
and how the id field contains values that appear in the Member 
table. All rows have a value for the data borrowed field. Why 
would some of the date returned fields appear to have no value 

Relational Databases  |  15



at all? 
6. The web site for these notes has a number of databases. 

Download the University database and examine its contents. 
This database contains information about departments and 
courses in a fictional university. Typically a university is 
organized into faculties which comprise departments and 
those departments offer courses. For instance many 
universities have a Faculty of Science which itself may contain 
departments such as Mathematics, Statistics, and Physics. 
Each of these departments will offer courses for students to 
take: Introduction to Calculus, Introduction to Statistics, 
Discrete Mathematics, etc. 

1.2.1 Modifying Rows 

With Microsoft Access, open the Library.accdb database file. Open 
the Book table in Datasheet view. With the cursor positioned in a 
row, try modifying the data recorded for that book. If you position 
the mouse cursor, you can change the value recorded for the book’s 
call number, title or author. Try doing this – remember you can 
always download this database again if you wish to get back to what 
you started with. As you begin modifying a value (e.g. adding an ‘s’ to 
make the last name Matthews) an editing symbol appears to the left 
of the row: 

 

Figure 1.7 Editing a row 
If you recognize that you are making a mistake you can undo your 

editing action by pressing the Escape key (keyboard). 
To make your change permanent you must move the cursor to 

16  |  Relational Databases



another row for the update to be completed – when you do this, you 
will note the editing symbol disappears. 

In some situations, you will find MS Access provides a formal 
Undo capability. Consider the following figure that shows an Undo 
icon in the upper left corner that appeared after changed Matthew 
to Matthews and moving the cursor to the next row: 

 

Figure 1.8 The Undo icon – click it and the last action is undone 

1.2.2 New Record Button to Add New Records 

Try adding a new book record to the Book table. You can add a new 
book by first clicking on the New Record button shown near the 
bottom of the window: 

 

Figure 1.9 Add new record button 
To complete your action you must type values for callNo, title, and 

author. As a first example use a call number that does not appear 
for any other book. As we will soon see the Book table is designed in 
such a way that each book must have a different call number. Your 
addition will be successful if your book is given a call number that 
no other book has. When you add a new row you must move the 
cursor out of the row for the addition to be completed. 

As a second example try to add a new book, but this time, use a 

Relational Databases  |  17



call number that already appears in the table. In this case, MS Access 
will reject your new record. Try this and you will see a response 
similar to: 

 

Figure 1.10 MS Access message for duplicate primary key 
The important part of this message for us is the part that refers 

to duplicate values or duplicate data. When we try to add a row with 
the same call number as some other row MS Access refers to the 
duplicated call number value. Note that you can press the Escape 
key to remove the new row from the table display. Soon we discuss 
table design where you will see that the call number field is designed 
to be the primary key of the Book table. 

Adding a row to a table is also referred to as inserting, or 
appending a row. 

1.2.3 Deleting Rows 

You can remove a record in the Book table by highlighting a row 
(click in the cell just to the left of a call number) and then press the 
Delete key on the keyboard: 

 

Figure 1.11 Delete a record: select record, press delete 
When you press the Delete key, Microsoft Access will respond in 

one of two ways depending on whether or not there is an existing 
reference to the row you are trying to delete: 

18  |  Relational Databases



No, a 
reference 
to the 
book 
does not 
appear in 
the Loan 
table. 

Yes, a 
reference 
to the 
book 
appears 
in the 
Loan 
table. 

Figure 1.12 Attempting to delete a record (row) in an Access table 
Datasheet View 

When you view the Loan table you are able to see the books that 
library members have taken out and whether or not a book has been 
returned. Rows in the Loan table have references to rows in the 
Book table and to rows in the Member table. The default action in 
MS Access is that deletion to this record is disallowed if there is a 
row in a table that has a similar reference to it. So we cannot delete 
a book if there is a Loan row referencing it. 

We have briefly shown how to modify, add and delete data in 
tables. Next, we will introduce the design perspective for tables. 

1.2.4 Table Design View 

So far, we have been opening Access tables in Datasheet View where 
we can view and change data in rows of a table. When in Datasheet 
View, we can switch from datasheet view to Design View by clicking 
on the design icon located near the upper left hand corner (see 

Relational Databases  |  19



figure 1.13). When the Design View icon is clicked, the display 
changes: the icon becomes a Datasheet View icon and the display 
changes to reveal design information (see figure 1.14). 

 

Figure 1.13 Click on the Design View icon to switch to Design View 
When you click the Design View icon, you will see the display 

change as shown in figure 1.14. You will see the field names listed 
along with their data type. According to the field where the cursor 
is located, you see other properties for that field. Data types vary 
somewhat from one database system to another, but of course there 
are many similarities too. Properties are other characteristics that 
you can define for a field such as the maximum length of values 
stored for the field. 

Generally, we want data in a database to be reasonable and 
correct. We can use data types and properties to achieve certain 
types of correctness. Consider the following integrity rules as rules 
we would like to enforce: 

• Call numbers, titles, and authors are alphanumeric. Any text 
you can type on the keyboard is acceptable. 

• Each call number must be unique (there can be no duplicates) 
• Each book must have a title 
• A value for call number must be no more than 50 characters 

long 
• A value for title must be no more than 255 characters long 
• A value for author must be no more than 255 characters long 

20  |  Relational Databases



The author field can be left out (it can be null).Now we discuss how 
these integrity rules are obtained in Table Design View. 

Figure 1.14 Table Design View 
In figure 1.14, the cursor is located on the callNo field; some 

properties of callNo are circled and discussed below: 

• Beside the callNo field you can see the key icon. This means 
the callNo field is the primary key. A primary key is a unique 
identifier – every row in the table must have a unique value in 
that field. Every table should have a PK specified and there can 
be only one PK for a table. When a field is defined as the PK 
then a value must be provided in each and every row. 

• The callNo field has a datatype of Short Text and a field size of 
50. Any value you can type on the keyboard is acceptable but 
the overall length, number of characters, is restricted to at 
most 255. 

• The callNo field is indexed and in this case no duplicates are 
allowed. The index constructed by MS Access is similar in 

Relational Databases  |  21



purpose to the index at the back of any book: the index allows 
MS Access to quickly locate a specified row. However, this 
index is different from that at the back of a book because it 
allows only one entry per indexed value (No Duplicates is 
specified for the Indexed property). Each call number is unique. 
As you move the cursor up and down you should note the 
following for this sample table: For title: 

• The title field has a data type of Long Text with a field size of 
255. A text field can comprise any combination of letters, 
digits, and punctuation. Any value entered by a user cannot 
exceed a gigabyte of text. Access forms and reports can only 
display 64,000 characters. 

• A value is required. When entering data for some book, the 
user cannot omit the title. 

• There is no index on title. 

For author: 

• The author field has a data type of Long Text with a field size of 
255. A text field can comprise any combination of letters, 
digits, and punctuation. Any value entered by a user cannot 
exceed a gigabyte of text. 

• A value is not required. When entering data for some student, 
the user can omit the author. 

• There is no index on author. 

 
Now, open the Member table and then the Loan table in Design 

view. Examine the properties of each field. For reference see figure 
1.15. 

Member Table 

22  |  Relational Databases



Field Data Type 

id 

Autonumber: 
MS Access 
will generate 
a unique 
number for 
each row. 
The user 
cannot enter 
id values. 

firstName Short Text 

lastName Short Text 

Loan Table 

Relational Databases  |  23



Field Data Type 

callNo Short Text 

id 

Number: numeric 
values must be 
entered by the user. 
This data type is a 
proper match to the 
Autonumber data 
type. 

dateBorrowed Date/Time: the user 
must enter a date 

dateReturned Date/Time 

dateDue Date/Time 

fine 
Currency: the user 
must enter values in 
dollars and cents. 

Figure 1.15 The fields of the Member and Loan tables 
Later, we will examine data types and properties in much more 

detail. 

1.24 Exercises 

Use your Library.accdb to complete the following: 

1. Use Design View to add the following two fields to the Member 
table. 
Gender: Text field of length 25 to accommodate the values 
male, female, and prefer not to disclose. Make this a required 
field that is not indexed. 
BirthDate: a Date/Time field; required; not indexed. Switch 
back to Datasheet View (You must reply yes to the system 
prompt to save your changes). You should notice there are no 
values for gender nor birthDate. 

2. Now enter values you deem appropriate in the gender and 

24  |  Relational Databases



birthdate fields for each member. Close the table and reopen it. 
You will see the values you entered are still there. 

3. When new members join the library information about them 
must be entered into the Member table. Each member is given 
an id value automatically. Add new members to the library and 
note how MS Access will not let you enter id values; instead, 
MS Access generates those values for you – id values are 
generated sequentially. Close the table and then reopen the 
table to confirm your additions worked. 

4. Typically, a library assesses a fine the user must pay if they 
keep a book out past the due date. As well the library needs to 
track the amount, if any, the member has paid. In this exercise, 
add two fields to the Loan table so we can keep track of fines 
that are assessed and the amount the member has paid. 

◦ Open the Loan table in design view and add two new fields 
named fineAssessed and finePaid. These fields must have a 
Currency data type. In lower pane of the Design view 
window, verify the Field Properties for fineAssessed and 
finePaid fields. Format property should contain a Currency 
data type and Decimal Places property contains Auto. 

◦ Save the Loan table and then view the rows of the table. 
There are no amounts for these fields. 

◦ Choose some row(s) in the Loan table and enter values for 
the fineAssessed and finePaid fields. Note the values you 
enter will appear as dollars and cents. 

5. In exercise 3, you added a new member and in exercise 4 you 
added fields to the Loan table. Consider that the person you 
added now borrows a book and so a row must be entered into 
the Loan table. Enter such a row. 

6. After successfully entering data for exercises 3, 4, and 5, you 
are aware of a member and a book for which there are 
references in the Loan table. 

Relational Databases  |  25



◦ View the Member table and try to delete that member, and 
then view the Book table and try to delete that book. 
These deletion attempts are unsuccessful because of the 
references to the Loan table. 

◦ Now open the Loan table and find the loan record you 
entered in exercise 5. If you delete this row you will find 
that you are able to delete the member (provided you did 
not enter more loans for this person). These actions mirror 
the way in which data would typically be deleted from a 
database: if you want to delete a row you must first delete 
(or modify appropriately) any rows that reference it. 

26  |  Relational Databases



2. Creating Tables 
RON MCFADYEN 

The typical Microsoft Access database comprises several kinds of 
database objects such as tables, forms, queries and reports. Each 
table represents a kind of entity (persons, places, things, events, 
etc.), or relationship between entities. For instance, if we are 
keeping track of departments and courses at our University 
database then we should have two tables: 

Department: to keep information about departments 
Course: to keep information about courses. 

For each department, suppose we need to know things such as 
department code, department name, location of the department (an 
office number), phone number for the department, and the name 
of the department’s chair. Suppose departments can be identified 
by their department code (e.g. ACS) and by their department name 
(e.g. Applied Computer Science). Both of these fields are assigned by 
the University and each will be unique across departments. We will 
choose to use the department code as the primary key. We choose 
to use department code as the primary identifier for departments. 
We show Department with some sample data: 

Department 

deptCode deptName deptLocn deptPhone chairName 

ENGL English 3D05 786-9999 April Jones 

MATH Mathematics 2R33 786-0033 Peter 
Smith 

ACS Applied Computer 
Science 3D07 786-0300 Simon Lee 

PHIL Philosophy 3C11 786-3322 Judy Chan 

BIOL Biology 2L88 786-9843 James 
Dunn 

Creating Tables  |  27



Figure 2.1 Department table 
Suppose the creation of the Course table keeps track of courses 

offered by the University and includes the fields: course number, 
title, description and credit hours. At the University, what is a 
course number? The ways of identifying courses varies from one 
institution to another. A common way is to display the department 
code followed by the course number (e.g. “ENGL 2221”; “ENGL 2221”) 
which comprises two fields: a department code and a course 
number. We will use this convention and must include department 
code as a field in the Course table. The combination of department 
code and course number serve as a unique identifier (i.e. together 
they comprise the primary key). We show this Course table 
structure with sample data as follows: 

28  |  Creating Tables



Course 

deptCode courseNo title description creditHours 

ACS 1453 
Introduction 
to 
Computers 

This course 
will introduce 
students to the 
basic concepts 
of computers: 
types of 
computers, 
hardware, 
software, and 
types of 
application 
systems. 

3 

ACS 1803 
Introduction 
to 
Information 
Systems 

This course 
examines 
applications of 
information 
technology to 
businesses and 
other 
organizations. 

3 

ENGL 2221 The Age of 
Chaucer 

This course 
examines a 
selection of 
medieval 
poetry and 
drama with 
emphasis upon 
Chaucer’s 
Canterbury 
Tales. 

6 

Creating Tables  |  29



PHIL 2219 Philosophy 
of Art 

Through 
reading key 
theorists in the 
history of 
esthetics, this 
course 
examines 
some of the 
fundamental 
problems in 
the philosophy 
of art, 
including 
those of the 
definition and 
purpose of art, 
the nature of 
beauty, the 
sources of 
genius and 
originality, the 
problem of 
forgery, and 
the possible 
connection 
between art 
and the moral 
good 

3 

BIOL 4451 
Forest 
Ecosystems 
Field Course 

This is an 
intensive 
three-week 
field course 
designed to 
give students a 
comprehensive 
overview of 
forest ecology 
field skills. 

2 

BIOL 4931 Immunology 

Immunology is 
the study of 
the defense 
system which 
the body has 
evolved to 
protect itself 
from external 
threats such as 
viruses and 
internal 
threats such as 
tumor cells. 

3 

30  |  Creating Tables



Figure 2.2 Course table 

2.1 Using Design View to Create Access Tables 

In this section, we will step through the process of creating a new 
table in a Microsoft Access database. From either the web page for 
these notes or as instructed by instructor, download and open the 
MyUniversity database (MyUniversity.accdb file). 

1. Click on the Create tab (located in the Tables group) in the 
Ribbon.  View the available table options by hovering the mouse 
over Table, Table Design and SharePoint Lists options. 

Figure 2.3 Creating a new table using Microsoft Access – Table 
Design 

2. Click Table Design option to begin a process to create your new 
Department table. A new table object is inserted into your database 
and the new table will open in Design View. A blank table object will 
be displayed where you can enter field definitions for your table. 
A field definition comprises field name, data type, and description. 
You can also set the table’s primary key. The Table design object is 
displayed as follows: 

Creating Tables  |  31



Figure 2.4 Microsoft Access – Table Design View 
3. By referencing Figure 2-5, begin entering each field name and 

choosing the appropriate data type. The description column is 
optional and may contain a longer description of the field’s 
contents. This description contains comments that may be useful 
for someone who is viewing the table. Once you have done this, you 
should have a table design that looks like: 

Figure 2.5 Microsoft Access – Department Table Design View 
4. Next, we need to select and set the primary key for the table. 

The primary key is a field(s) with unique values associated with 
the table. The deptCode field will be the primary key field for the 
Department table. Click the mouse in the cell to the left of the 
deptCode field name. Locate the Primary Key command in the Table 
Tools – Design tab and in the Tables group. Click the Primary Key 

icon  on the toolbar. As an alternative, you can right-click using 

your mouse on the deptCode field and select the Primary Key 

command. Access uses the primary key  icon to show the 
deptCode as the primary key for the Department table: 

32  |  Creating Tables



Figure 2.6 Setting the Primary Key 
5. At this point, you should save your work by clicking the Save 

icon in the upper left hand corner of the form. You will be prompted 
to save the table. Save your table as “Department”. 

You should still be in Design View for the Department table. Note 
that you can press the F1 function key on your keyboard to get help 
pertinent to the location of your mouse cursor. If your cursor is 
positioned on a field name and you press F1, you will see a window 
pop open that displays suggestions from Microsoft Access regarding 
how you should name fields. Try this. Before going any further, 
try pressing F1 in other locations on the table design view (i.e. 
Data Type and Description). We recommend that you read some of 
the information available to become more familiar with Microsoft 
Access. 

2.1.1 Data Types 

Microsoft Access provides several data types. We will discuss a few 
basic data types including Short Text, Long Text, Number, Date/
Time, Currency, AutoNumber, Yes/No, Hyperlink, Attachment, 
Calculated, and Lookup Wizard. 

Creating Tables  |  33



Figure 2.7 Microsoft Access Data Types 

Short Text 

If you specify that a field has the Short Text data type, Access will 
permit any alphanumeric characters to be placed in that field in a 
row of the table. This is a common choice when the data will not 
be used in calculations. The Short Text data type provides for values 
that have fewer than 256 characters. If you know that a maximum 
length is less than 255 characters, it would be appropriate to use 
the Field Size property (discussed in the next section) to limit the 
maximum length of a short text string. 

Long Text 

A designer selects Long Text if the field will have alphanumeric data 

34  |  Creating Tables



longer than 255 characters. Long Text allows for a maximum length 
of 1 GB (gigabyte) of memory storage. You will need to remember 
that Access databases has a limitation of storing only 2 gigabytes of 
data. For example, consider the description field of the Course table. 
Could the description field be longer than 255 characters? 

Number 

If a field is used for storing values that are used in numerical 
calculations then Number is the appropriate data type except for 
calculations involving money (e.g. Currency type). Access Number 
data types (e.g. quantity ordered) contain example Field Size 
properties available for Byte, Integer, Long Integer, Single, Double, 
and Decimal options. The Field Size property (properties are 
discussed later) can be used to limit the number of storage locations 
used per value. 

Date/Time 

If a field contains date and or time values, then the Date/Time data 
type should be chosen. The Format property (discussed later) allows 
you to control how these values will appear to the user for date 
and/or time based data. 

Currency 

If a field will contain monetary values, the Currency data type 
should be chosen. Currency data type provides for numeric 
calculations that are accurate to 15 digits to the left of the decimal 
and 4 digits to the right of the decimal. This data type can be used 
to prevent rounding off currency values during calculations. 

Creating Tables  |  35



AutoNumber 

If you choose AutoNumber, Microsoft Access will automatically 
generate the next value for you when a row is inserted into the 
table. By using the New Values property, you can arrange the 
numbers to be generated sequentially or randomly. Often control 
numbers for things like orders, invoices, registrations, etc. are 
numeric and we can leave it to the system to generate a next value 
for us. 

Yes/No 

This data type can be used for data that has only one of two possible 
values including Yes/No, True/False, On/Off. 

Hyperlink 

If you choose Hyperlink, you may store text/numeric values 
including website links (URLs) and email addresses. 

Attachment 

This data type allows you to include embeddable objects to attach 
to your database records. Attachments may include a variety of 
different files including examples of documents, spreadsheets, 
digital images, graphs, tables, and other types of files you may use. 

36  |  Creating Tables



Calculated 

If you would like to create a calculation using fields from the same 
table, you can create a calculated field to store the result in a table. 

Lookup Wizard 

Sometimes you need to restrict values to a list of known values or to 
values appearing as primary key values elsewhere in the database. 
An example of known values could be considered for the 
creditHours field. The creditHours field could contain a stored value 
list of 1, 2, 3, and 6. The Lookup Wizard allows you to create this data 
type with helpful steps to allow you to make the appropriate wizard 
choices for your lookup data values. 

2.1 Exercises 

These exercises will refer to the Library database (as referenced in 
the previous chapter). 

1. Open the Microsoft Access Library database file. 
2. Open and evaluate the Member table. The id field was defined 

with the AutoNumber data type. Change the table view to 
Datasheet View. Experiment by adding new member records. 
You will note that id values increase by 1. Now try deleting the 
last two members that you added. If you add those members 
back in, what id values do they get? Are id values reused? 

3. Consider the Book table. Change the table view to Design View. 
Add a field named paperback that can be used to indicate 
whether or not a book is a paperback. Choose the Yes/No 
datatype. Save the design and switch to datasheet view. Now 

Creating Tables  |  37



you will see how to enter such values. Microsoft Access 
provides a box that is to be checked, or not. You can select (a 
‘Yes’) using the mouse or by using the space bar. You should 
experiment with this. 

4. Consider the Member table. Previously you added a gender 
field. Open the Member table in design view and change the 
datatype for gender to be Lookup Wizard. The wizard will 
automatically present 3 successive popup windows where you 
will: 

i) Specify that you are providing the lookup values; 
ii) Enter the values (Male, Female, and NotDisclose); 
iii) Specify that values are to be limited to your list. 

Save the table. Change the Member table to Datasheet view so 
you can test the datatype you have just created. You will notice the 
user sees a drop down list containing Male and Female, and the user 
cannot enter or select an inappropriate value into the table. 

2.1.2 Properties 

While creating Microsoft Access tables, each field must have a 
declared data type as discussed above. According to the data type, 
Access will present to you a set of field properties that you can 
apply to the table design for your data and how data is stored 
in the database.  We will discuss the following: Field Size, Format, 
Input Mask, Caption, Default Value, Validation Rule & Validation 
Text, Required, Indexed, Show Date Picker, and New Values. 

As referenced earlier in MyUniversity database, department table 
stores department information. Departments can be identified by 
the department code and department name. When you open the 
Department table in Design View, you can view the table design grid 
(top portion of the window) containing the declared field names, 
data types, and descriptions. In the lower portion of the window, 

38  |  Creating Tables



you will notice the “Field Properties” section where you can 
specifically set the properties of a currently selected table field. 

Field Size 

In the Department table, let’s focus on the deptCode field and the 
associated Field Size property. Suppose the University uses 3 and 
4 character values for department codes.  The deptCode field 
property can be set to have a Field Size of 4. The Field Size property 
enables you to set a maximum size limit on data entered in that 
column to limit the possibility that an end-user accidentally types a 
longer string of characters and thereby enters incorrect data. In this 
way, we can limit the kinds of data entry errors users make when 
they input data into the table and thus improve the overall quality of 
our database structure. 

Data integrity is a serious issue for databases. Setting Field Size 
for Text data and Number data is a common thing to do. Often 
organizations will limit the data they collect for fields such as last 
name and first name (for example, 30 characters). If the data type 
is Number then values selected for Field Size are values such as 
Byte, Integer, Long Integer, etc. These kinds of values are associated 
with an increasing number of memory locations used per value. A 
selection of Byte restricts storage to 1 byte of memory (8 bits), and 
since the largest positive integer that can be stored in a byte is 255, 
the values stored in the field are forced to be in the range from 
0 to 255. Further information is readily available if you use the F1 
function key on Field Size for a Number data type. 

Format 

The Format property is used to customize the way text, number, 
dates, and times are displayed to the end user. For instance, 

Creating Tables  |  39



selecting Medium Date causes values like January 14, 2013 to be 
displayed as 14-Jan-13; selecting Long Date results in the display 
January-14-13. See figure 2.8 for these format examples. If you have 
Text data (such as department code), you could display the text in 
uppercase letters by specifying the > symbol as the format code. 
Another interesting Format specification is @;None. If this is used 
and there is no value to display in the field, the word “None” will 
be displayed in the field to the user. In this final example, consider 
the field for the student identification number (SIN). You may have 
seen these displayed to users with hyphens between the 3rd and 4th 
digits and the 6th and 7th digits. If the SIN is a Text field of length 
9, it can be displayed using a Format specification of @@@-@@@-
@@@. 

Value In Field Format Property Displayed as 

michelle obama > MICHELLE OBAMA 

January 17, 2019 Medium Date 17-Jan-19 

January 17, 2019 Long Date January-17-19 

@;None None 

786456789 @@@-@@@-@@@ 786-456-789 

@@@-@@@-@@@;None None 

Figure 2.8 Format Examples 

Input Mask 

The Input Mask property allows the user to know how data will be 
entered into the table according to a specific pattern. This feature 
improves the overall quality and consistency of data entered in a 
database. When the cursor is in the Input Mask area, a ‘builder 
button’ appears. When you click this button, you will see a list of 
popular controls. If you were to choose the sample mask for a phone 

40  |  Creating Tables



number, you will see the control !(999) 000-0000 appear. As a result 
of this choice, the user must enter a 7-digit phone number with an 
optional 3-digit area code. 

Caption 

The Caption property helps provide you with a descriptive heading 
for the defined field instead of simply displaying the field name. If 
there is no caption, the heading will display the Field Name for the 
data. Sometimes the field name is not what you want your users to 
see. Instead of displaying the field name, deptCode, as the heading 
above a list of department codes, you may prefer to use the words 
Department Code. To accomplish this, just enter the heading text in 
the Caption property for the field. 

Default Value 

To help you expedite time when entering data into your database, 
you can include a default value for a table field. If there is a common 
value for a field, you should consider setting a default value which 
will automatically appear in the field for all new records. For 
example, if most courses are 3-credit hour courses then the value 3 
can be set as the default value for all new courses. 

Validation Rule & Validation Text 

When you enter data into a database, validation rules limit what data 
is entered into the field to improve data quality in the table. If a 
field has a validation rule then the rule is tested whenever the user 
enters data. If the test fails, the user is prompted with a message 
containing the validation text. To apply a validation rule, you could 

Creating Tables  |  41



enforce the number of credit hours to be less than 10 by entering 
the rule <10. The validation text to support the validation rule would 
display Please enter a value between 0 and 10. 

Required 

You can make a field contain a Required property according to the 
mandatory information that needs be entered into the column in an 
Access table. Consider the deptName field in the Department table. 
If a user enters data for a new department then it is unreasonable 
for the deptName field to not have a value. To ensure there will 
be a required field in a table, we would select Yes for the Required 
property setting. 

Indexed 
Microsoft Access automatically creates an index (unique – no 
duplicates) on a field that is the primary key. A unique index is a 
special internal data structure that Access builds to facilitate two 
things: 

(1) to ensure fast access to rows of data when the user 
specifies a value for such a field in a query, and 

(2) to ensure in the case of no duplicates that no two rows 
of the indexed table could have the same value for that field. 

The index data structure is very similar to the index you see at 
the back of a book. An index comprises several entries where each 
entry has a value (a term used in the book) and a reference (a page 
number in a book). In the case of duplicates allowed, there can be 
several references (several pages where the term appears). 

You may choose to have an index on any field. If a field could 
have duplicate values then you must choose an index that allows 
duplicates. 

42  |  Creating Tables



Show Date Picker 

If the data type is Date/Time, this selection option enables you to 
select a date using the date picker with a displayed calendar icon. In 
the table’s Datasheet view, the calendar icon will display to the right 
of the chosen field where you would like to enter your date. Click 
the calendar icon, select your desired date, and the proper calendar 
control will display. This is a convenient tool for data entry to ensure 
the accuracy of a selected date from the displayed calendar icon. 

New Values 

As you recall, Autonumber is a data type which will automatically 
generate incremented values as the primary key in the Datasheet 
View. In your Access table, click Design View and select the primary 
key field. If the table design data type is AutoNumber, you can 
choose New Values (Field Property) to specify whether the next 
value for the field will be the next highest integer or it will be a 
random integer. 

2.1.2 Exercises 

In this exercise, you will be using your MyUniversity database. 

1. Open the Department table. In design view: 

◦ Set the deptCode field to have a length of 4. Use > (greater 
than symbol) as the display format to display deptCode 
text as uppercase text. 

◦ Set the length of the deptPhone field to be 10. 
◦ Choose the Phone Number input mask for the deptPhone 

field. 

Creating Tables  |  43



◦ Save the Department table. 
◦ Switch to Datasheet View for the Department table. 
◦ Use Figure 2.1 Department Table as a guide to enter data 

into the Department table. 

2. Create a new Course table. In design view: 

◦ Add the following attributes to include department code, 
course number, title, short description, and credit hours. 

◦ Set department code, course number, description and title 
fields with Short Text data types. 

◦ The credit hours field should have number data type with 
no decimal places.. 

◦ Set the deptCode field to be Short Text with a length of 4 
so that it matches the properties of deptCode in the 
Department table. Later, it will be important that the 
deptCode field in both Department and Course are 
defined the same. 

◦ Use Figure 2.2 Course Table as a guide and enter data into 
the Course table. 

▪ Note: Data entered into description field should 
accommodate Short Text data type. If there are 
additional characters entered in field, the data type 
should be changed to Long Text data type. 

In this exercise, you will be using the Library database. 

1. Consider the firstName and lastName fields in the Member 
table of the Library database. 

◦ Modify the caption for these fields to be First Name and 
Last Name respectively. 

◦ Save the table and reopen in Datasheet View. You will see 
these captions at the top of their respective columns. 

44  |  Creating Tables



2. The Loan table has fields that are defined with the Date/Time 
data type. Experiment applying different formats for these 
dates. 

3. Consider the id field in the Member table of the Library 
database. In Design View, change the increment property of 
the id field to be random (instead of increment). This is a non-
reversible action (but you can download the database later to 
get a fresh copy). Now add some new members. What can you 
say about the id values that are assigned? 

4. Validation rules and validation text are important features to 
assist database users. 

◦ Consider the Loan table and its date fields. Microsoft 
Access has many built in functions one of which is Date() 
which always returns today’s date. 

◦ To ensure that someone always enters a due date later 
than today, enter the following properties for the dateDue 
field: 

Validation rule: >= Date() 
Validation text: Enter a future date. 
In this situation, we are entering a field-level 

validation rule. These rules are useful when we can 
state a requirement independent of other fields. Test 
the effect of this validation rule by switching to 
Datasheet View and entering valid and invalid values 
for the due date. 

◦ To ensure the date borrowed value is less than or equal to 
the date returned value, we need to construct a validation 
rule that involves two fields. Microsoft Access will not let 
you enter this rule at the field level; instead, such a rule 
must be specified at the table level. To enter a table level 
rule, 

▪ In Design View in the Loan table, click on the 

Creating Tables  |  45



dateBorrowed Field Name. 
▪ In the Show/Hide group, click on the Property Sheet 

button to display the Loan table properties. The 
Property Sheet pane will be displayed on the right side 
of your window. 

Figure 2.9 Property Sheet button 

◦ Enter the the following table properties for the 
dateBorrowed field: 

Validation rule: [dateBorrowed]<=[dateReturned] 
Validation text: Date returned cannot be prior to 

date borrowed. 
The square braces, [ ], that appear in the expression 

are required. These square brackets reference the 
field names in the Access table. 

◦ Enter this rule and verify that it prevents the user from 
entering improper dates. 

46  |  Creating Tables



2.1.3 Primary Keys 

This section will require that you have previously created the 
Department and Course tables in your MyUniversity database. 

When designing and creating a database, every table should have 
a declared primary key field(s) which will contain unique values. The 
purpose of a primary key is to establish relationships between tables 
and key fields in a relational database. In the MyUniversity database: 

• The Department table has declared deptCode as the primary 
key. 

• The Course table has a composite primary key – a key formed 
using two attributes: deptCode and courseNo. 

To set a primary key, the table must be open in Design View. The 
primary key field is displayed as the first field in the table field 
names. You must select the field (or combination of fields) and then 
click the Primary Key icon. The deptCode is the primary key for 
the Department table. The Course table comprises two fields as 
its primary key which uniquely identifies each record. Since the 
primary key involves more than one field, this primary key is 
referred to as a composite key. 

2.1.3 Exercises 

In this exercise, you will continuous using your MyUniversity
database. 

1. Set the primary key for the Department table. With the 
Department table in Design View, select the deptCode field 
and then click on the Primary Key button. When done 
successfully, you will see the deptCode field with a key icon 
beside it: 

Creating Tables  |  47



Figure 2.10 Setting the Primary Key for the Department table 
If Microsoft Access rejects your primary key, you 

must examine the data values you previously entered 
for deptCode in the table. The error could occur due 
to duplicated record values. If this happens, you must 
view the table in Datasheet View and find the 
duplicated value and make necessary changes. 

Once Access has accepted your primary key, you 
should open the table in Datasheet View and 
experiment: How does Access respond if you try to 
create a new row with an existing primary key value? 

2.  Set the composite primary key for the deptCode field 
and CourseNo field in the Course table. Begin by first 
selecting the first field key field in the table. While holding 
the CRTL (control) key down on the keyboard, select the 
other field. With both fields selected, click the Primary Key 
button: 

a. Select the deptCode (click the cell to the left of 
the deptCode field). 
b. Select the next field to be part of the PK. Hold 
down the CTRL (control key) on the keyboard. Click 
the courseNo field (and now release the CTRL key). 
c. Click the Primary Key icon and save your table. You 
will now see the key image beside both fields as in: 

48  |  Creating Tables



If Microsoft Access rejects your primary key, you 
must examine the values you previously entered for 
deptCode and courseNo for duplicate value(s). If this 
happens open the table in Datasheet View and 
examine the rows to find duplicate values of the 
combination {deptCode, courseNo}. 

Once Access has accepted your primary key, you 
should open the table in Datasheet View and 
experiment: How does Access respond if you try to 
create a new row with an existing primary key value? 

3. Advanced: Later on, we will discuss the different types 
of relationships between tables. Perhaps, you are curious on 
how relationships are created? The Department and Course 
tables are related to one another through the deptCode field. 
It is reasonable for us to expect that a deptCode value in 
a row of the Course table also appears in a row of the 
Department table. If we are recording a course for the 
mathematics department then we expect the database to 
have a corresponding row in the Department table. To 
ensure this is the case, a formal relationship between these 
two tables using the Relationships Tool can be created as 
follows: 

a. Select the Database Tools tab, in the 
Relationships group, click the Relationships 
command: 

Creating Tables  |  49



b. The Relationships Tool opens and you will see a 
blank relationships diagram. 

c. From the list of tables, select both Department 
and Course, and then click Add. 

d. With both tables showing on the diagram: 

50  |  Creating Tables



▪ Select the deptCode primary key field in the 
Department table, drag deptCode field to the 
Course table, and release the mouse button above 
the deptCode field in the Course table. 

▪ Verify the accuracy of the established 
relationships between the Department and 
Course tables. 

▪ On the Ribbon, click on the Edit Relationships 
button and the Edit Relationships dialog box 
appears. 

▪ Verify that the table names and associated field 
names are the common fields displayed for this 
relationship. If a field name in the Edit 
Relationships dialog box is not correct, click on 
the drop-down dialog box for the incorrect field 

Creating Tables  |  51



name, and select the appropriate field name 
displayed in the Table/Query list. 

▪ If you follow these instructions, you will be able to 
enforce referential integrity (RI). 

▪ To enforce referential integrity for the 
relationship between Department and Course 
tables, click on the Enforce Referential Integrity 
check box. 

▪ If referential integrity is enforced then it becomes 
impossible to have a row (record) in the Course 
table without a matching row in the Department 
table. 

▪ If you attempt to create relationships in your 
database: 

▪ Examine if there is an existing relationship 
saved in the database. 

▪ If there is an existing relationship saved 
between two tables, the existing relationship 
will need to be removed before modification. 

52  |  Creating Tables



3. Creating Forms 
RON MCFADYEN 

For each table you should create a basic form that can be used 
to manage data for the table. Once forms have been created, your 
users will have a more user-friendly way of entering and managing 
data in your database. (Microsoft Access Datasheet View is not 
considered user-friendly). 

3.1 Using The Form Wizard 

There are many ways to create forms. We discuss the simplest 
approach here. In Microsoft Access, click the Create tab in the 
Forms group and then select the Form Wizard: 

Figure 3.1 Microsoft Access – Form Wizard 

Figure 3.1 Use Form Wizard 

The Form Wizard steps you through a sequence of choices where 
you choose the tables/queries for the form, the fields to appear on 
the form, the layout for the form, the style, and the title to appear at 
the top of the form. At this point, you should create two forms in the 
MyUniversity database including one form for the Department table 
and one form for the Course table. As the wizard steps you through 
each case, you should select/enter: 

Creating Forms  |  53



1. All fields of the table to appear on the form (try clicking the 

 button when it shows to move the fields from the 
Available Fields column to Selected Fields column) 

2. A Columnar layout 
3. A style of your choice 
4. A title of your choice 

The last thing you do with the wizard is choose one of: Open the 
form and view data, or, to Modify the form’s design – choose to open 
the form to view data. Note that data appears according to 
information you provided for data types and properties. 

A major difference now is that the user will see just one row at a 
time. Notice the navigation buttons at the bottom of the form where 
the user can click to navigate through the rows of the table or to add 
a new row: 

Figure 3.2 Navigation buttons on a form 

3.2 Modifying the Form 

You can make forms easier to use by adding buttons for common 
operations for: 

1. Adding a new row 
2. Deleting the currently displayed row 

54  |  Creating Forms



3. Closing the form 

3.2.1 Adding A Button 

To add buttons to an existing form, you must open the form in 
Design View. At this point make sure that wizard capabilities are 

available – if necessary select the Use Control Wizards: (see 
below) to turn wizard capabilities on. To add a button you click 
the Button button: 

Figure 3.3 Use Control Wizards when adding controls to a form 
Next, you click a location on the form where you would like 

the control button to be placed. For example, click in the area 
labeled Form Footer and space will be added to the form’s design to 
accommodate the button. 

Because Use Control Wizards is on, the system will take you 
through a series of Command Button wizard prompts where you 
specify the nature of the button type. In this activity, you need to 
add three buttons on your form. Consider selecting/entering the 
following at the pertinent prompts: 

Creating Forms  |  55



Button Category Action Text/
Picture 

Add button Record operations Add new record New Row 

Delete button Record operations Delete a record Delete Row 

Close button Form operations Close form Close 

Figure 3.4 Types of Button categories 
A Course form in Design View with three buttons in the Form 

Footer section: 

Figure 3.5 Course form with three buttons in Form Footer 
Anytime after creating a button, you can switch to Form View to 

test your design. If some button is not working as you like then just 
switch back to Design View, delete the button and try again. 

3.2.2 Adding A Label 

A label is a control that holds text for display purposes only. By 

56  |  Creating Forms



default, Microsoft Access adds a label containing the table name in 
the Form Header area of the form. 

Figure 3.6 Course form with header text in Form Header 
To add a label, you must click the Label control, then click (and 

drag for sizing) where you want the label placed. You can then type 
the content for the label and adjust its properties for formatting (e.g. 
font size, color, …). 

3.2.3 Adding a Calculated Field 

A calculated field involves a calculation using existing fields which 
can be created in a table, query or form. In this example, we will 
be creating a calculated field in our form to determine the total 
number of student study hours for each credit hour. For instance, 
the expression will include multiplying the value of the credit hours 
(Course table) in a registered course times 2.5 study hours. The 
result of the expression will display the total number of hours a 
student should study for a course. 

To add a control where a calculated value will be displayed in your 
form, you must click the Text Box control. Click (and drag for sizing) 
where you wish the control to be placed on the form. You will see 
two controls placed in the form: a label and a text box. For the label, 
click on the label and enter the text Study hours. In the text box, you 

Creating Forms  |  57



would click on the text box and enter a formula. The expression for 
the number of study hours formula would be:  =[creditHours]*2.5  . 

Figure 3.6 Text Box control on a form 
Adjust the size and location of the controls as necessary. To do 

this can be a little tricky. To move a control you must select the 
control, and then click (and drag) the large dot in the control’s upper 
left corner: 

To resize a control you must position the mouse so you can see a 
resizing indicator: 

58  |  Creating Forms



3.2.4 Sample Course Form Solution 

Figure 3.7 Creating a Study Hours calculated field 

Exercises 

1. Open the Orders database (see databases for these notes or 
instructions from your instructor).  Create a new form named 
OrderDetails.  Select all fields from the OrderDetails table to 
display in your form. Add a textbox on your form to calculate 
an extended price formula. Enter the text Extended price as the 
label.  In the text box, enter an extended price formula 
calculating quantity times unitprice. Open your form in Form 
View and view the data to verify your calculated field displays 
properly. 

2. Note that you can modify the properties of fields on a form. 
When you are in Design View for this form, you can right-click 
a the extended price field and select Properties. In the 
displayed Property Sheet pane, select the Format tab. Select 
the  Format property for this calculated field, click on the 
drop-down menu, and choose Currency to modify this format 
property. Save your OrderDetails form. 

Creating Forms  |  59



3. Open the Library database and create individual forms of your 
choice or as directed by your instructor for each of the Book, 
Loan and Member tables. 

3.3 Advanced Forms 

We have discussed simple forms based on single tables above. To 
manage a complex database, a user will need to work with data that 
is obtained from more than one table. We will discuss Microsoft 
Access queries and relationships later in this course. Once you have 
worked through those subjects, we suggest that you read Appendix 
A: Forms Involving Multiple Tables. 

60  |  Creating Forms



4. Microsoft Access Queries 
RON MCFADYEN 

Creating Queries 

At this time, you have been able to create tables while entering data 
records into the database. With data now entered into the database, 
you can create a query that will display data from the tables in a 
database. A query is a saved Access object that is similar to asking 
the database questions which can display, sort, or filter this data 
into useful information. 

Queries are used for multiple purposes in a database 
environment. Queries can be used to view table data that contains 
criteria to restrict the information a user can see. A variety of 
different query types can be created to view, change, add and delete 
data. As a result, queries can be executed to form the basis of a 
Microsoft Access form and report. 

We shall use the Library database for the following Access query 
examples. With Microsoft Access, you can create a query in multiple 
ways with the select query being the most basic type of Access 
query. We will start creating our first query examples using Query 
Design. To create an Access query, click the Create tab and then 
click the Query Design icon: 

Figure 4.1 Create a query 

Microsoft Access Queries  |  61



As a result, Access opens a Query By Example (QBE) window that 
you use to specify components of a query: 

Figure 4.2 Query Design – QBE window 
This window comprises two areas: Relationships and Grid. The 

Relationships area (upper window pane) will display each table and 
fields that need to be accessed along with the identified 
relationships used between those tables. 

The Grid area (lower window pane) is used to specify: 

• fields and tables, 
• sort fields, 
• fields to be included in the results display, 
• different types of criteria can be applied in the row to obtain 

specific query information, 
• calculations, 
• grouping of rows with similar values in the field list to display 

summary information. 

While using the Library database, we will start with simple query 
examples and progressively work our way to more complex 
scenarios. 

62  |  Microsoft Access Queries



4.1 Simple Query 

The simplest query is one that displays all of the rows and columns 
in a table. In our first example, we want to list all of the books in the 
library. The process of creating the select query is as follows: 

◦ Click on the Create tab (if necessary) and then click on the 
Query Design icon. Now, you can select the tables for your 
query in the Library database. 

◦ If the Show Table dialog box has not displayed, choose the 
Show Table option in the query setup group. 

◦ A Show Table window displays. From the list of tables,  you 
must select the Book table. This task can be completed by 
double-clicking on the Book name or single click on Book 
and click on Add button. 

Figure 4.3 QBE List of table names 

◦ Choose Close from the Show Table pop up window. 

Microsoft Access displays the Book table and its fields in the 

Microsoft Access Queries  |  63



Relationships area. The first in this list is an * which stands for 
all attributes. To display all records in the Book table, double-click 
the asterisk symbol (*). This results will then be displayed as the 
following: 

Figure 4.4 Choosing all fields in the Book table 
We can run the query to test it and confirm the results that we 

expect: list all rows in Book. To run a query, click the Run (!) icon: 

64  |  Microsoft Access Queries



Figure 4.5 Run a query 
There are other views of a query. If you click the drop down just 

below the View icon: 

Figure 4.6 Several types of query views 
You can see all the ways of viewing a query, including: 

▪ Datasheet View 
▪ Design View 
▪ SQL View 

You can also run a query by choosing Datasheet View. When 
developing a query, one often alternates between Datasheet View 
and Design View in order to obtain the desired query results. When 
you run a query, Access will retrieve the display requested table 
information. In this case, the results of running the query are: 

Microsoft Access Queries  |  65



callNo title author paperback 

CB 351 M293 
1983 Atlas of medieval Europe Donald 

Matthew True 

HQ 1143 P68 
1975 Medieval women Eileen 

Power False 

PC 14 V48 
1965 Medieval miscellany Frederick 

Whitehead True 

QA 76.73 
S67C435 
2004 

Joe Celko’s Trees and 
hierarchies in SQL for smarties Joe Celko False 

QA 76.73 
S67C46 1997 

Joe Celko’s SQL puzzles & 
answers Joe Celko True 

QA 76.76 
A65P76 2011 Programming Android Zigurd R 

Mednieks True 

QA 76.9 
D26H355 
2008 

Information modeling and 
relational databases T A Halpin True 

QA 76.9 
D26H39 
1996 

Data model patterns : 
conventions of thought David Hay True 

QA 76.9 
D35C45 1999 

Joe Celko’s data & databases : 
concepts in practice Joe Celko False 

R 141 E45 
2006 

Medieval medicine and the 
plague 

Lynne 
Elliott False 

R 487 T35 
1967 Medicine in medieval England. Charles H 

Talbot False 

Figure 4.7 Displayed Query results 
Save your query by clicking on the Save button on the Quick 

Access Toolbar. 
 

66  |  Microsoft Access Queries



Figure 4.8 Pop-Up dialog box for saving a query 
After saving the query, you can see the saved query name listed 

as an Access database object. This would save the definition of the 
query in the database. The results of the query are not stored or 
saved since it displays data records from the associated tables. The 
query, however, can be run any time by an end user. Whenever a 
user runs the query, the current contents of the Book table are 
accessed in this example. 

4.2 Projection Query 

Next, we will build a query that displays a subset of columns from 
a table. Projection queries display a subset of the fields in the table 
and is said to produce a vertical slice of the table. 

While referencing the Book table, we need to display a listing of 
call number and title values. From the previous instructions, create 
a new query in Design View. In the Show Table dialog box, select the 
Book table and close dialog box. Double-click the callNo field and 
title field to be displayed in the grid. 

Microsoft Access Queries  |  67



Figure 4.9 Query design showing specific fields 
The definition of the query is now complete. The grid area 

identifies the selected Book table fields. Both of these fields will be 
displayed because the check box has been selected in the Show row 
for these fields. Only fields with selected check boxes on the Show 
row are displayed in the results. Running this query yields: 

68  |  Microsoft Access Queries



 

callNo title 

CB 351 M293 1983 Atlas of medieval Europe 

HQ 1143 P68 1975 Medieval women 

PC 14 V48 1965 Medieval miscellany 

QA 76.73 S67C435 2004 Joe Celko’s Trees and hierarchies in SQL for smarties 

QA 76.73 S67C46 1997 Joe Celko’s SQL puzzles & answers 

QA 76.76 A65P76 2011 Programming Android 

QA 76.9 D26H355 2008 Information modeling and relational databases 

QA 76.9 D26H39 1996 Data model patterns : conventions of thought 

QA 76.9 D35C45 1999 Joe Celko’s data & databases : concepts in practice 

R 141 E45 2006 Medieval medicine and the plague 

R 487 T35 1967 Medicine in medieval England. 

Save the query in the Library database using a descriptive query 
name for the library callNo and title fields. 

4.3 Criteria Added To Select Query 

A select query is one of the most common types of Access queries. 
Similar to the previous query, select queries may include criteria to 
limit the subsets of displayed data. 

Query designers have options to view all of the displayed records 
stored in a table or include criteria in a query to identify a limited 
number of records to include in the query results. In this query 
example, let us refer to the Book table in the Library database to 
apply query criterion. We want to create a query listing information 
about books where the paperback field has a value Yes. 
Requirements like this are placed on the criteria row of the 
pertinent field(s). 

To develop this new query, we need to select the Book table and 

Microsoft Access Queries  |  69



then add fields to the query design grid. Include the callNo, title, 
author, and paperback fields from the Book table. In chapter 2, the 
paperback field was added to the Book table with a Yes/No data 
type. For the paperback field query criteria, we would also enter the 
value Yes on the criteria line. When the query is executed, Access 
will compare the paperback field values to determine whether or 
not the record contains the Yes record value. Save your query as 
paperbacksQuery. 

Figure 4.10 Query with selection criteria 
 
When we run the query, we receive the following results listing 

paperbacks: 

Figure 4.11a Query results with selection criteria 
When a query runs, the query processor accesses the underlying 

table(s), and displays results where the data meets the criteria 
specified. For a query accessing a single table consider that the 
query processor is performing these actions: 

For each row in the table: 

70  |  Microsoft Access Queries



• Retrieve the row from the database. 
• Test the row to see if it meets the criteria specified.  A query 

can compare values in a: 

◦ Text field by using quotation marks (ie: “Donald Matthew”) 
as the criterion for the field. 

◦ Numeric field by placing the number (without quotes) as 
the criterion for the field. 

• If the row meets the criteria, the fields marked for show will be 
displayed. 

Select queries allow you to apply criteria (similar to formulas) for 
specific records you want to be displayed in the query results.  The 
saved query object does not store data instead queries display data 
stored in your tables as a horizontal subset. Most queries are a 
combination of selection and projection which can be created from 
multiple tables. It is typically the case that queries can also be used 
as a data source for another query, form or report. 

LIKE Operator 

Sometimes we need to retrieve information based on partial 
character comparison information.  To find matching criterion, we 
can use the Like operator where we specify an appropriate pattern. 
These patterns are defined using one or more wildcard characters. 
By default our Microsoft Access databases use the ANSI-89 standard 
for special wildcard characters. 

You can change the standard your database is using by examining 
and changing the Microsoft Access Options for Object Designers/
Query Design. 

The ANSI-89 wildcard characters are: 

Microsoft Access Queries  |  71



Wildcard 
Character Matching criteria Example 

* Matches any number of 
characters 

Like “1*” matches all text strings 
that start with “1” 

? Matches any single 
character 

Like “a?c” matches “aac”, “abc”, 
“acc”, etc. but does not match 
longer strings such as “aacc” or 
“xabc” 

# Matches any single 
numeric character 

Like “b#b” would match “b2b” 
and “b7b” but not “bam” 

[] 
Matches any single 
character within the 
brackets 

Like “j[ai]m” matches “jim” and 
“jam” but not “jaim” 

! 
Used with [ ] when you do 
not want to match any of 
the enclosed characters 

Like “b[!ao]b” matches “bim” and 
“bub” but not “bam” or “bob” 

– 
Used with [ ] to specify a 
range of matching 
characters (given in 
ascending sequence) 

Like “b[0-9]b” would match to 
“b2b” but not to “bam” Like “b[a-
c]b” would match “bab”, “bbb”, 
and “bcb” 

Figure 4.11b ANSI-89 Wildcard Characters 

4.4 Sorting Data In A Query 

Sometimes an end user wants to view data in a particular field sort 
order. Fields can be sorted in ascending order (A-Z) or descending 
order (Z-A). Access will also allow queries to contain either a single 
sorted field or multiple sorted fields. 

Let us extend the previous example to have books sorted in 
ascending order by title. Create another query similar to the 
paperbacksQuery. Now, place the cursor in the Sort line beneath 

72  |  Microsoft Access Queries



the title field. Click and select ascending from the drop-down menu 
choices. Save this query and run it. 

From the query results, notice that all paperbacks records are 
displayed. Since they are all paperbacks, we will not need to display 
the paperback field in our final query results. In this query, we are 
seeing callNo, title and author in the Book table and having the 
paperback field displayed may be redundant information. 

Access allows you to sort and hide fields in your query results. To 
hide the paperback field in our query, click the Show check box to 
turn Show off. 

Figure 4.12 Sorted query results with hidden field 
Save this query and run it to notice how the results are sequenced 

by title without displaying the paperback field. 

4.4 Sorting Data In A Query Exercises 

Use the Library database that is open for this query session. 
Create and save the following queries: 

1. List the titles of books in descending order. 
2. List the titles of books written by Joe Celko. 
3. List all members of the library. 
4. List the members in sequence (ascending order) by last name. 
5. List the members sequenced (ascending order) by last name 

Microsoft Access Queries  |  73



and then by first name. (If members have the same last name 
they appear on consecutive lines, and those lines are in 
sequence by first name.) 

6. Which of the above are a) simple queries, b) selection queries, 
c) projection queries, d) both selection and projection queries? 

4.5 AND Operator 

Suppose, we want to apply multiple criteria using the Library 
database to list Celko’s books in your Access query. There are two 
criteria a book must meet: 

◦ Criteria 1: the author’s name must end with “Celko”. 
◦ Criteria 2: “SQL” must appear in the title. 

In this case, Criteria 1 must be true to display records containing 
“Celko” author names and Criteria 2 must be true to display books 
that have “SQL” in the title. The Access query design would use 
AND logic in the query Criteria row to support multiple criteria. 
When using QBE, we must place these two criteria on the same 
criteria row in order that Microsoft Access finds rows that match 
both criteria conditions. 

We are also looking for titles that have the text “SQL” anywhere 
within the title. Access provides a way for us to define such a 
pattern. The asterisk (*) wildcard character can be used in a text 
string that matches these specific letters or combination of letters. 
This wildcard character can be used to find “SQL” text that is located 
either at the beginning, end or in between the text title values. 
Refer to Chapter 6.2.1 Like Operator for additional ANSI-89 wildcard 
characters. 

For Criteria 1, we need two wildcard characters. We specify the 
pattern that title must match: Like “*SQL*”. 

74  |  Microsoft Access Queries



For Criteria 2, we specify the pattern that author must match: Like 
“*Celko”. 

Figure 4.13 AND Criteria on one criteria line 

4.6 OR Operator 

Instead of books with titles containing “SQL” and authored by Celko, 
suppose the end user wants a list of books with “SQL” in the 
title or where Celko is the author. In this situation, we place the 
criteria on separate QBE lines. Access finds records that matches 
any “or” criteria to be true. A row is selected for the result set if 
either or both of the criteria are true for a row. 

Microsoft Access Queries  |  75



Figure 4.14 OR Criteria on different criteria line 

4.6 AND/OR Operator Exercises 

Use the Library database that is open for this query session. 
Create and save the following queries: 

1. List the titles of books where the author name ends with 
“Celko”. 

2. List the titles of books where the author name ends with 
“Celko” and the text “data” appears in the title. 

3. List the titles of books where the author name ends with 
“Celko” or the text “data” appears in the title. 

4. List titles of books where the title contains the word 
“medieval”. 

5. List the titles of books where the title contains the words 
“medicine” and “medieval”. 

76  |  Microsoft Access Queries



6. List the titles of books where the title contains the words 
“medicine” or “medieval”. 

4.7 JOINS 

From our queries, we have included criteria displaying a primary key 
field along with a selection of fields from a single table. By recalling 
basic table design concepts, each table has a defined primary key 
field. With the relationship between two tables, there is a defined 
one-to-many relationship between the key fields. 

In the creation of queries, we will want to display data from one 
or more tables. These defined table relationships are represented 
by different types of query joins. If a query must be answered using 
data that appears in more than one table then the query requires a 
database join. 

By continuing to use the Library database, suppose we wish to 
produce a list of member names and the call numbers of books they 
have borrowed. Important points about this query: 

• The Loan table has the loan information we need 
• The Member table has the member names we need. 

Before we compose the query, consider how you would produce 
the results if you were to do this manually. If you had two listings 
showing the rows of each table in front of you on your desk, you 
could proceed as follows going through the Loan table listing row by 
row starting with the first row: 

1. For the current row in Loan: 

a) Write down the call number of this loan. 
b) Let N stand for the value of the member̀s id for this loan. 
c) Now look at the Member listing row by row starting with 

the first row: 

Microsoft Access Queries  |  77



▪ Examine the row to determine if the row is for 
member N. 

▪ If this is correct, write down the member̀s name 
beside the call number. 

2. If there are more rows in Loan, advance to the next row and go 
back to step 1. 

In the above algorithm, we have determined a member id at step 
1. b) and we next look for a matching member id in step 1. c). For 
a human, the process is simple but tedious. We could say we are 
trying to go from a row in Loan to a row in Member based on rows 
having the same value for member id. In database terminology, we 
say we are joining Loan to Member based on a common value of 
member id. A tedious but well-defined task is something a computer 
can excel at, and fortunately, we can get the database system to do 
the job of joining rows, based on values of a common attribute, for 
us. 

Construct this query as follows: 

1. Create a new query. 
2. Select both the Member and Loan tables from the Show Table 

window:
3. Note the line connecting the two tables. This is called 

a relationships line which causes Access to join pairs of rows. A 
row in Member is joined to a row in Loan where the two rows 
have the same value for id. 

4. Select the call number, first name, and last name fields by 
double-clicking them to obtain: 

78  |  Microsoft Access Queries



5. Run the query and you see the results: 

Chapter 4 – Query Exercises 

Use the Library database that has been used for this query session. 
In each of the following exercises, the necessary data is in more than 
one table. Verify and/or specify a Join (default Inner Join type) is 
applied to your queries. 

Create and save the following queries: 

1. For each loan, show the title of the book and the date it was 
borrowed. Note that the title is in the Book table and the date 
borrowed is in the Loan table. 

2. Modify the previous query to produce a listing that is in order 
by title and then by date. 

3. Produce a list that shows for each loan the book title, the name 

Microsoft Access Queries  |  79



of the member who borrowed the book, and the dates the book 
was borrowed and then returned. Note: 3 tables are needed for 
this query. 

4. Produce a list of members and the books they have taken out 
on loan. Include the member’s last name, first name, and titles 
of the books. The information to be displayed is in 2 tables, but 
it is necessary to specify 3 tables for this query: Member joins 
to Loan Book joins to loan 

5. Modify the previous query to produce a listing that is in order 
by last name and then by first name. 

6. For member id 2, list the persoǹs name and the titles 
borrowed. 

7. Produce a list of book titles and member names for those 
books that are due back May 18, 2014. 

8. Produce a list of book titles and member names for those 
books that have not been returned. In this case you must give 
the criteria for dateReturned as null. Null is a special keyword 
that represents no value. 

80  |  Microsoft Access Queries



5. Relationships and 
Relationship Tools 
RON MCFADYEN 

In this chapter, we will sharing information about database 
relationships and how relationships are defined from one table to 
another. The Relationships Tool is used to define relationships 
between tables based on common fields. Relationships defined 
using the Relationships Tool are important as they help ensure 
integrity of data and they provide us with default join criteria for 
queries involving more than one table. 

In this section, we will use the University and the Library 
databases in our examples. 

Consider the University database that contains a Department 
table and a Course table. These two tables have the deptCode field 
in common: 

In the Department table, deptCode is the primary key and 
is used to identify a specific department. 

In the Course table, the deptCode field is a part of the 
primary key and indicates the department to which the 
course belongs. 

To ensure that a row in Course is related to an existing row in 
Department, we can use the Microsoft Access -Relationships Tool 
to define a relationship between these two tables based on this 
common field. Using a diagram, we can illustrate this connection 
between these two tables: 

Relationships and Relationship
Tools  |  81



Figure 5.1 Displaying a relationship between two tables 
In this situation, we say that deptCode in Course is a foreign 

key referencing the deptCode field in Department. 
Now, consider the Library database: 

The Loan table has a callNo field as well as the Book table; 
the callNo field identifies a specific book. 

The Loan table has an id field as well as the Member table; 
the id field identifies an individual member. 

In the Library database, we can establish a relationship between 
the Loan table and the Book table based on the callNo field. A 
second relationship can be established between the Loan table and 
the Member table based on the id field. Using a diagram, we can 
illustrate these two relationships: 

Figure 5.2 Showing relationships involving three tables 
The Loan table has two foreign keys identified as callNo and id: 

The callNo field in Loan references the primary key 
(callNo) in Book. 

The id field in Loan references the primary key (id) in 
Member. 

82  |  Relationships and Relationship Tools



5.1 Database Integrity In Relational Database 
Design 

Primary Key 

Recall that a table’s primary key (PK) is a field (possibly composite) 
that has unique values. Each record row has a PK value different 
from any other row in the table. Primary key is a field with a unique 
identifier. If a query were designed to retrieve a row of that table 
based on a value of the PK, then at most one row of the table will be 
retrieved. 

Foreign Key 

A foreign key is a field (or combination of fields) in a table B that 
is associated with a primary key field in a table A through a 
relationship (A and B can be the same table). Data redundancy is 
eliminated by having a foreign key in one table related to a primary 
key in another table. 

Entity Integrity 

When we define a primary key for a table, we are enforcing entity 
integrity. Entity integrity means that each row in the table is 
identifiable through its primary key. Microsoft Access requires a 
value for a primary key in a newly added row, and Access enforces 
uniqueness of those values. 

Relationships and Relationship Tools  |  83



Referential Integrity 

Suppose we have two tables, table A and table B, where a 
relationship is defined between the primary key of table A and a 
foreign key in table B. We say referential integrity exists for this 
relationship if each row in table B has either: 

• a foreign key (FK) that does not have a value at all (i.e. it is null) 
or 

• a foreign key (FK) that has a value that exists as a primary key 
(PK) value in a record row in table A. 

5.2 Relationships 

Tables can be related through one-to-one, one-to-many, or many-
to-many relationships. If you open the Access Relationships Tool for 
the University database, you will see the following diagram showing 
two tables and a one-to-many relationship: 

Figure 5.3 Access One-to-Many Relationship with Department and 
Course Tables 

There are two symbols on the relationship line which inform us 

84  |  Relationships and Relationship Tools



the table relationship is one-to-many for which there are two rules 
that are in place: 

▪ For each department there will be zero or more 
courses for that department, and, 

▪ Each course is for exactly one department. 

To create a relationship in Microsoft Access, you must 

• Open the Relationships Tool located in the Database Tools tab. 
• Add the pertinent tables to the diagram if they are not there 

already 
• Click, hold, and drag a field (normally this is the PK) of one 

table to the related field (to become a FK) in the other table. 

You will be asked whether or not Referential Integrity is to be 
enforced. As a general rule-of- thumb, you should select Yes. There 
must be some exceptional circumstance that makes you select No. 

Once relationships are established using the Relationships tool, 
they are used by Microsoft Access when you create queries. These 
relationships are then used as your default table joins. 

5.2.1 One-To-Many Relationship 

In relational databases, one-to-many relationships is one of the 
most common type of relationship between two tables. As described 
in the previous example, there is one record (also known as parent 
record) in a table which must be associated with one or more 
records (child or children records) in a second table to establish a 
one-to-many relationship. You will need to verify that both the PK 
field and FK field have the same data type to create this relationship 
even though these fields have different names. 

In Access, you can create relationships by selecting the 
Relationships command and displaying your tables. You drag the 

Relationships and Relationship Tools  |  85



primary key (PK) field of one table to the other table. The primary 
key field in the first table must contain unique values. If the foreign 
key (located in the second table) does not have unique values, then 
you are creating a one-to-many relationship. The relationship 
between the two tables will be illustrated by then having Access 
display a relationship line. 

To summarize one-to-many relationships:  For each row in the 
referenced table, there can be several related rows in the other 
table. For a primary key (PK) value, there can be many rows in the 
other table with that value stored as the foreign key (FK). Let’s look 
at the following example to illustrate a one-to-many relationship 
using the University database. 

Practice Your Skills Example 

The Department table and Course table are related through the 
common deptCode field. Both of these fields have the same data 
type declared in these tables. You can practice your skills in this 
exercise by creating the relationship between these two tables: 

1. Before re-creating the relationship to practice your skills, you 
must first remove the current relationship between the 
Department and Course tables.  Display the Access 
Relationships window. 

2. Delete the existing relationships line (use your mouse to point 
and click on the relationship line, press delete, and follow 
through with the dialog box to delete the relationship). 

3. Now, click and drag the deptCode field in the Department 
table and drop it on top of the deptCode field in Course table. 
On releasing the mouse, Microsoft Access will display the 
following dialog box: 

86  |  Relationships and Relationship Tools



Figure 5.4 Defining One-to-Many Relationship 

4. At this point, Access is requesting the user to confirm the 
proper fields are being related. The user needs to make a 
choice regarding Referential Integrity and ‘Cascade’ options. 

◦ You should choose Enforce Referential Integrity in almost 
all cases as this helps reduce the chance of corrupting 
data. 

◦ We will not be currently discussing ‘Cascade Update/
Delete Related Fields’ in this chapter. 

◦ Close the Relationship window. 
◦ From the above example: When the user clicks Create, 

Access shows the relationships line with 1 on the one side 
and an infinity symbol on the many side of the 
relationship: 

Relationships and Relationship Tools  |  87



Figure 5.5 One-to-many relationship: department offers courses 

5.2.2 One-To-One Relationship 

If you drag a primary key field of one table to another table, and if 
the foreign key has unique values (a unique index exists for it) then 
you are creating a one-to-one relationship. For each row in the first 
table, there can be at most one related row in the other table. A 
row in the referenced table has a primary key value that equals the 
foreign key value in at most one row of the referencing table. 

5.2.3 Many-To-Many Relationship 

If you create a relationship in Microsoft Access where both fields 
you associated (via the click, hold, and drag sequence) do not have 
unique values (i.e. neither have unique indexes) then Access creates 
an ‘indeterminant’ relationship. In this situation, a row in one table, 
A, may be related to multiple rows in the other table, B, and where a 
row in table B may be related to multiple rows in the table A. 

This is not done very often and corresponds to a many-to-many 
relationship. Most database designers would avoid this in their 
database designs. If a database designer is faced with two tables, 
A and B, that are related via a many-to-many relationship, the 

88  |  Relationships and Relationship Tools



designer would likely introduce a third table, say C, where A and C 
will be related via a one-to-many relationship and similarly, B and C 
will be related via a one-to-many relationship. 

Later in these notes, we discuss database design. We will see how 
many-to-many relationships can be decomposed into two one-to-
many relationships. 

Exercises 

Relationships 

For these exercises, use the Company database which does not have 
any Access relationships defined for the Employee and Department 
tables. The first few rows of Employee table and Department table 
data are as follows: 

 

Relationships and Relationship Tools  |  89



Employee 

empId firstName lastName supervisor dept 

1 Tanya Dickson 

2 Heidi Herring 1 1 

3 Hiroko Hawkins 1 2 

4 Emmanuel Watkins 1 3 

5 Oliver Holt 2 1 

6 Raphael Delaney 3 2 

7 Basia Franks 2 1 

8 Bruno Pena 2 1 

 

Department 

deptId department manager phone 

1 Marketing 2 (204) 999-4444 

2 Human Resources 3 (204) 999-3333 

3 Sales 4 (204) 999-2222 

1. Consider the Employee and Department tables. Note: the 
Employee table has a field named dept which indicates the 
department where the employee works. The relationship can 
be stated: 

90  |  Relationships and Relationship Tools



◦ Each department has zero or more employees, and, 
◦ Each employee works in at most one department. 

Create a one-to-many “works in” relationship between 
Employee and Department. Enforce Referential Integrity 
between these tables. 

2. The Department table has a field named manager which 
indicates the employee who is the head of the department. The 
relationship is stated: 

◦ Each department has one employee who manages that 
department, and, 

◦ An employee may manage at most one department. 

There is a unique index defined for the manager field and 
so you can create a one-to-one relationship “has manager” 
between Department and Employee. 

◦ In the relationship window, add a second Employee table to 
the relationship window. 

◦ There will be two (2) Employee tables on the diagram. 
◦ Drag the PK empId field from Employee_1 table to the 

supervisor field of the Employee table. 
◦ Enforce Referential Integrity between these tables. 
◦ Save the Relationships that you have created for your 

database structure. 
Note how Microsoft Access represents the relationships 
between these tables. 

Relationships and Relationship Tools  |  91



Displayed relationships using MS Access – Database Tools 

3. Consider the empId and the supervisor fields of Employee. 
Most employees report to someone – someone who is their 
supervisor. Only employee 1 does not report to anyone else. 
The supervises relationship can be stated: 

▪ An employee may supervise many other employees, 
and, 

▪ An employee reports to at most one other employee. 

a) Create the supervises relationship. If you are doing this 
exercise after Exercise 2 then your relationship diagram has 
2 copies of the Employee table. You may proceed onto 
understanding the hierarchical reporting structure in Step 
C. 

b) If you are not doing this after exercise 2, then you must 
add Employee to the diagram twice so there are 2 copies 
of Employee on the diagram. Drag the PK empId field from 
Employee_1 table to the supervisor field of the Employee 
table. Note how Access draws this diagram. 

c) Save the Relationships that you have created for your 
database structure. 

d) Open the Employee table in Datasheet View to view the 
data representing the hierarchical reporting structure. The 
supervisor field correlates with the empID field. 

e) The supervisor field is an implementation of a 
hierarchical reporting structure for our company. Use a 
piece of paper and draw the reporting structure for the 
company (for the data given at the start of these exercises). 

We have started this exercise showing the reporting 
structure for the first 4 employees. For example, Tanya is the 
supervisor for Heidi, Hiroko and Emmanuel.  As you analyze 

92  |  Relationships and Relationship Tools



the data further, Heidi, Hiroko and Emmanuel would then 
supervisor additional employees in the database. 

Queries 

The following query exercises depend on the relationships diagram 
from the above exercises. When developing a query, you will see 
that MS Access will include relationships when you add tables in the 
upper pane of the Query Design window for a query. 

Evaluate your table relationships carefully that your previously 
created. This will ensure that the tables included your  queries will 
then have the correct one-to-many relationship between the 
Department and Employee tables. In these exercises, you will also 
need to create an inner join for Employee and Employee_1 tables. 
The displayed join between these Employee tables will only display 
rows where the joined fields from both tables are equal. 

Upper Pane of the Query Design Window 

4. Create a query to list for each department, the name of the 
department and the name of its manager. 

5. Create a query to list for each department, the name of the 
department and the names of its employees (the people who 

Relationships and Relationship Tools  |  93



work in the department). Sequence your results by department 
name. 

6. Create a query to list for each department, the name of the 
department head and the names of the department’s 
employees. Your query must list on each row of the result set 
the department name, the head’s last name, and the last name 
of each employee. Sequence your results by department name, 
and within department by employee last name. 

7. Create a query that lists each supervisor and the employees 
he/she is supervising. Your query must list, on each row of the 
result set, the last name of the supervisor and the last name of 
the supervised employee. Sequence the results by supervisor 
and within supervisor by employee. 

94  |  Relationships and Relationship Tools



6. Microsoft Access Queries – 
Advanced 
RON MCFADYEN 

Previously in Chapter 4 – Microsoft Access Queries, we learned how 
to construct simple queries using logical expressions including AND 
criteria and OR criteria to query different types of conditions. Now, 
we will examine more complex database query situations. 

6.1 Logical Expressions 

Sometimes we need to retrieve data based on multiple criteria 
which are expressed as logical expressions involving the logical 
operators and, or, and not. For example, a student using the 
University database might want to know which courses are offered 
by the Chemistry and Physics departments which are not 6 credit 
hour courses. The criteria can be restated with emphasis on logical 
operators: 

◦ A course is a Chemistry course or a course is a Physics 
course, and 

◦ The course has any value for credit hours but not 6. 

The criteria applied in this example involves and, or, and not. Stating 
the requirements in our natural language may seem easy to 
understand. If we state these expressions in an Access Query By 
Example (QBE) design window, the expressions will require criterion 
placed in the applicable Criteria row(s). 

Microsoft Access provides a way for us to specify the above using 

Microsoft Access Queries –
Advanced  |  95



the Criteria and Or lines in the Query design Grid. We will consider 
each of the operators And, Or, and Not. 

6.1.1 AND Criteria 

If one specifies multiple criteria on one line in the Access query 
design grid area, these criteria are identified with AND. For a row 
to contribute to the result of the query, the row must satisfy all the 
criteria which will result with fewer records being displayed. 

Example 

Suppose we want a list of all ACS 3 credit hour courses. We need to 
obtain the rows in Course where the logical expression 

(deptCode=”ACS”) AND (creditHours=3) 
is true. We code this in QBE as: 

Figure 6.1 Query design containing two expressions with AND 
criteria 

96  |  Microsoft Access Queries – Advanced



6.1.2 OR Criteria 

While one specifies multiple criteria on alternative criteria lines in 
the Access query design grid area, these criteria are identified with 
OR. For a row to contribute to the result of the query, the row 
must satisfy at least one criteria to be true and then the row will be 
displayed. 

If for some row either one or both of the sub- expressions 
evaluate to true, then the row will be selected for display. This will 
result with more records being displayed from your Access query. 

Example 

In this example, we can use a combination of criteria identified with 
AND and OR. If one specifies multiple criteria on both the Criteria 
lines and OR lines, the criteria on each criteria line is ANDed, and 
those evaluations on alternative criteria lines are then ORed. 

Suppose we need a list of all ACS courses that are 3 or 6 credit 
hour courses. Logically, we can express this as: 

(deptCode=”ACS” AND creditHours=3) OR 
(deptCode=”ACS” AND creditHours=6) 

We code this in QBE as: 

Microsoft Access Queries – Advanced  |  97



Figure 6.2 Two expressions that are ORed 

6.1.3 NOT Criteria 

While AND and OR criteria compare expressions, the NOT logical 
operator negates a logical expression. 

Example 

To get a list of 3-credit hour courses, we would use a criteria of 
3, but to list courses that are not 3 credit hours one could use the 
criteria: NOT 3, which, written in long form is: 

NOT (creditHours = 3) 
Coding this in QBE we have: 

Figure 6.3 Using NOT 

98  |  Microsoft Access Queries – Advanced



6.1 Exercises 

While using your MyUniversity database, create and save the 
following Access queries to: 

1. List all courses either in the Mathematics department or 
Statistics department. 

2. List all courses either in Mathematics or Statistics where the 
credit hours are greater than 1 for both courses. 

3. Lists the titles of courses offered by the Chemistry department 
or courses offered by the Physics department that are not full 
courses (that is, they are not 6 credit hour courses). 

4. List all 3 credit hour courses that are not ACS courses or all 6 
credit hour courses that are not ACS courses. 

6.2 Query Operators 

We will present two additional query expression operators 
including LIKE and IN. LIKE is used for pattern matching of text 
values and IN is used to test for inclusion within a set. 

6.2.1 LIKE Operator 

Sometimes we need to retrieve information based on partial 
character comparison information. Consider someone using the 
University database and wanting to find courses where the course 
description contains the word “computer”. To find courses matching 
this criterion, we can use the Like operator where we specify an 
appropriate pattern. These patterns are defined using one or 
more wildcard characters. By default our Microsoft Access 
databases use the ANSI-89 standard for special wildcard characters. 

Microsoft Access Queries – Advanced  |  99



Note: At some point, you may want to investigate the more recent 
ANSI-92 standard for wildcards. You can change the standard your 
database is using by examining and changing the Microsoft Access 
Options for Object Designers/Query Design. 

The ANSI-89 wildcard characters are: 

Wildcard 
Character Matching criteria Example 

* Matches any number of 
characters 

Like “1*” matches all text strings 
that start with “1” 

? Matches any single 
character 

Like “a?c” matches “aac”, “abc”, 
“acc”, etc. but does not match 
longer strings such as “aacc” or 
“xabc” 

# Matches any single 
numeric character 

Like “b#b” would match “b2b” 
and “b7b” but not “bam” 

[] 
Matches any single 
character within the 
brackets 

Like “j[ai]m” matches “jim” and 
“jam” but not “jaim” 

! 
Used with [ ] when you do 
not want to match any of 
the enclosed characters 

Like “b[!ao]b” matches “bim” and 
“bub” but not “bam” or “bob” 

– 
Used with [ ] to specify a 
range of matching 
characters (given in 
ascending sequence) 

Like “b[0-9]b” would match to 
“b2b” but not to “bam” Like “b[a-
c]b” would match “bab”, “bbb”, 
and “bcb” 

Figure 6.4 ANSI-89 Wildcard Characters 

Example 

To list courses where the description begins with “This course”, you 

100  |  Microsoft Access Queries – Advanced



need a pattern where you specify that a text value begins with “This 
course” which can be followed by anything else: “This course*” . 

In the Access query QBE grid, you enter the criteria for title: Like 
“This course*” : 

Figure 6.5 Using LIKE 
 

6.2.2 IN Operator 

The IN operator can be used if you need to determine if a field value 
is in specific list of values. The list of values is a comma-separated 
list enclosed in parentheses; for example (1, 3, 6) 

Microsoft Access Queries – Advanced  |  101



Example 

In the Access query QBE grid, use the IN operator in the University 
database. To list those courses offered by the Physics, Statistics and 
Mathematics departments you need a list of values: (“PHYS”, “STAT”, 
“MATH”) 

Using QBE, we code IN (“PHY”, “STS”, “MTH”) in the criteria line: 

Figure 6.6 Using IN 
To exclude those courses not offered by the Physics, Statistics and 

Mathematics departments, we code NOT IN (“PHY”, “STS”, “MTH”) in 
the criteria line. 

Note: Using IN is equivalent to using three simple logical 
expressions that are ORed, and is a convenient way of expression if 
there are several values in the list: 

102  |  Microsoft Access Queries – Advanced



Figure 6.7 IN vs OR Operators 

6.2 Exercises 

Develop the following queries using your MyUniversity database to: 

1. List courses offered by Physics or Applied Computer 
Science where this course description contains the word 
computer. 

2. List courses where the course description contains the 
word computer but where the course is not offered by 
the Applied Computer Science department. 

3. List courses where the credit hours are 1, 3, 6 or 9. 
4. List courses where the credit hours are not 1, not 3, not 6, and 

not 9. 

Microsoft Access Queries – Advanced  |  103



6.3 Query Properties 

Continue using your MyUniversity database from the previous 6.2 
Exercises. Re-open one of queries you created using the query 
operators. In the upper-right area of a query in Query Design View, 
you will see a button labeled Property Sheet. 

Figure 6.8-A Identifying Access Property Sheet button in Query 
design 

Click the Property Sheet button. In the Property Sheet, you will 
see properties for a field in the Grid, or, for the query itself, 
depending on where the cursor is located. Click the mouse in an 
open area in the Relationships Diagram (upper pane in Query design 
displaying the added table) and you will see properties for the query. 
Two query properties we will discuss include Top Values and Unique 
Values. 

104  |  Microsoft Access Queries – Advanced



Figure 6.8-B Query Sheet properties 

6.3.1 Top Values Properties 

You can change the selection property for Top Values to display ALL 
records in a table or a partial subset of the records in a table. The 
default is ALL which results in all rows displayed when the query 
is executed, but you can also use this property to limit the number 
of displayed rows. As indicated below, you can select an option or 
manually type a specific number of rows such as 5, or a specific 
percentage of rows to be displayed when the query is executed. 

Figure 6.9 Setting the Top Values property 

Example 

Open the Library database that you previously used in this text. 
Use the Library database where the Member table has one row per 
member. Sample data is shown below: 

Microsoft Access Queries – Advanced  |  105



id firstName lastName gender birthDate 

1 John Smith Male 15/05/1999 

2 David Martin Male 06/08/2000 

3 Betty Freeman Female 18/09/1997 

4 John Martin Male 11/09/2000 

Figure 6.10 Sample Library Members 
Scenario:  Suppose we wanted to know who is the youngest 

member. One way to find out is to sort the members by birthdate 
and then pick either the first or last row according to how you 
ordered them (descending or ascending). 

Solution:  Consider the following where the members are sorted 
in descending order by birthdate and then we list the first row by 
specifying Top Values = 1: 

Figure 6.11 Viewing the youngest member using the Top Values 
property = 1 

From the Member table data, the executed query produces the 
following result: 

firstName lastName birthDate 

John Martin 11/09/2000 

106  |  Microsoft Access Queries – Advanced



Figure 6.12 Query returns one result row 

6.3.2 Unique Values Property 

While creating your Microsoft Access query, there is a Unique 
Values property option. If the Unique Values property is set to Yes 
then Access will search for unique values in the field and eliminate 
duplicates rows from the result. 

Example 

Suppose a librarian wants a list of authors from the Library 
database. If we use a query to list the authors but we do not 
set Unique Values to Yes then the result could show an author 
several times, once for each of his/her books. The following result 
set shows Jeo Celko listed 3 times: 

Microsoft Access Queries – Advanced  |  107



Figure 6.13 Query displaying duplicate records 
We can eliminate such duplicates by specifying Unique Values = 

Yes as in: 

Figure 6.14 Query Property Setting Unique Value to Yes 

108  |  Microsoft Access Queries – Advanced



Instead of 11 names being displayed, this query would only list the 
9 different author names. 

6.3 Exercises 

1. Consider using the Library database. Answer the following 
questions by creating the following queries. 

1. Which member is the oldest? 
2. Which book was the first one to be taken out on loan? 
3. Which books have been taken out on loan? Any book listed 

should be listed only once – no duplicates. 
2. Consider using your MyUniversity database. 

1. Create a query to list the department codes (with no 
duplicates) of departments that offer 6 credit hour 
courses. 

2. Modify your query to list the department names too. 
3. Consider the Company database and its Employee table. 

Answer the following questions by creating the following 
queries. 

1. The empId field is assigned values sequentially starting at 
1. What is the last empId value that was used? (What is the 
empId for the last employee added to the table?) 

2. Write a query to determine the name of the oldest 
employee. 

3. Write a query to list all of the employee last names. If at 
least two employees have the same last name then this list 
will be shorter that a list of employees. 

4. Suppose there is a field hireDate which holds the date 
when an employee was hired. Write a query to determine 
the name of the employee who was most recently hired? 

Microsoft Access Queries – Advanced  |  109



6.4 Totals Query 

A Totals query allows you to summarize information in the database. 
When you summarize data from one or more tables, you are either: 

• Producing summary data for the whole table, or 
• Producing summary data for specific groups. 

For instance, you may want to know: 

• How many courses there are? 
• The average of the credit hours? 
• The number of courses in each department? 

You can create this Totals query by applying the Microsoft Access 
aggregate Totals function. To create a Totals query, you begin by 
creating a simple query that retrieves all the attributes that will 
be needed to be summarized. Click the “Totals” icon button in the 
“Show/Hide” button group (upper-right hand corner of the 
Microsoft Access window): 

Figure 6.15 Totals icon button 
When you click the Totals icon, the QBE Grid will add the 

Total line to your query. You will now see “Group By” displayed for 
each field in the grid. You must choose from the available drop down 
options: 

110  |  Microsoft Access Queries – Advanced



Figure 6.16 Choices for Aggregate Total line 
For each field in the grid you choose one of: 

• “Group By”: if the field is used for grouping 
• An aggregate function: if the field is to be summarized using 

that function. We will consider the standard set including sum, 
average, minimum, maximum, count. 

• “Where”: if the field has criteria to be used for selecting rows. 
Only rows satisfying the criteria contribute to the grouping 
and display of results. 

Example 

The simplest type of totaling query displays an aggregate over an 
entire set of rows. Consider referencing the University 
database. For example, to sum the credit hours over all courses in 
the MyUniversity database one can use: 

Microsoft Access Queries – Advanced  |  111



Figure 6.17 Determining the total for one field over all rows 
This query summarizes the entire table when executed. The 

result of this query is one line displaying a sum for all credit hours 
and courses. 

Example – Count 

Typically, the use of the Totaling feature is more complicated. 
Consider the University database and that we now need to obtain 
a count of the number of courses offered by each department. 
 Counting the number of items in a field is different from the 
previous Totals query using the Sum function. 

We begin with a query that lists the department code and any 

112  |  Microsoft Access Queries – Advanced



other field in the Course table. (CourseNo is a good choice because 
it can never be null. Nulls are passed over when the counting of field 
values is performed). The query below lists the fields we need: 

Figure 6.18 Step 1: Identifying the needed Course table fields 
In the upper right-hand corner of Design View for queries, you 

must click the Totals icon. When you click the Totals icon a new line 
(Total line) is added to the grid: 

Microsoft Access Queries – Advanced  |  113



Figure 6.19 Step 2: Total line is added to the QBE grid 
By default, Microsoft Access sets each field up for grouping. To 

count the number of courses in each department, you must click in 
the Total area for courseNo and change from Group By to Count: 

Figure 6.20 Step 3: Choose the appropriate aggregate for the group 
Now you have a query that will show the value of each department 

code along with a count of the number of courses for the 
department. This query produces a count for one row per 
department. 

To Review: 

Note: The first 5 aggregate function choices in Figure 6.20 are part 
of the SQL (structured query language) standard including: 
SUM, AVG, MIN, MAX, COUNT. They perform a sum, average, 
minimum, maximum or count over the values found within a group. 
When a Totaling query is executed, the following actions are 
performed by Microsoft Access: 

1. Rows are retrieved from the underlying table(s):  Recall that 

114  |  Microsoft Access Queries – Advanced



when Where is specified in the Total line then there is criteria 
that must evaluate to true for a row to be part of this result. 

2. The retrieved rows are organized into groups where the rows 
forming a group have the same value for the grouping field(s). 

3. For each group, aggregates are evaluated. 
4. A group can be eliminated from the results: If there is a criteria 

specified for a group and if the criteria evaluates to false, the 
group is excluded. 

6.4 Exercises 

Create and execute queries for the following exercises. 

1. Use your MyUniversity database to consider the last example 
where the number of courses per department is listed. The 
sample database is small and so many departments have just 1 
course. Modify the query to list results only for departments 
where there is more than 1 course. For this you must include a 
criteria >1 for the field where COUNT is specified: 

1 for the Course field.” width=”102″ height=”128″> 

2. Consider your MyUniversity database to create queries: 

Microsoft Access Queries – Advanced  |  115



1. For each department list the department code and the 
largest value for credit hours. 

2. For each department list the department code, 
department name, and the number of courses. 

3. Consider using the Library database to create queries: 

1. List the number of books that have SQL in the title. 
2. List the number of members by gender. 
3. What is the total for fines? 

4. Consider using the Company database to create queries: 

1. List the number of employees in each department. 
2. List departments that have more than 25 employees. 
3. For each employee who is a supervisor, list the supervisor 

name and the number of employees they supervise. 
4. Suppose the Employee table has a salary field holding an 

employee’s salary. What is the average salary? 

 

6.5 Parameter Query 

If you need a query but the criteria will not be known until run-
time, you use a parameter query. When we compare the previous 
select queries that have been created with parameter queries, they 
are very similar in design. A parameter query design uses square 
brackets [ ] on the Criteria line for a selected field which will allow 
the user to type inside the [ ] for a prompt when the user runs the 
query. When a user runs a parameter query, Microsoft Access will 
show the user the prompt and waits for the user to respond with a 
value for the parameter. Microsoft Access replaces parameters with 
the user-supplied values just before it executes the query. 

116  |  Microsoft Access Queries – Advanced



Example 

Suppose a user using the University database needs a list of courses 
having a specific value for credit hours. The query below has a 
parameter in the criteria line for creditHours: 

Figure 6.21 Parameter query 
When the query is run, the query is temporarily suspended. The 

user is prompted with the message as provided in the square braces 
[ ]. Once the user responds to the prompt, the running of the query 
continues with the value the user entered as the criteria value. 

6.5 Exercises 

1. Consider using your MyUniversity database to create a query 
to: 

1. List all courses in a department (for which the user 
supplies the department code). 

2. List all course titles where the user supplies both the 
department code and the credit hours. Note that two 
separate criteria, each with their own parameter, must be 
specified. 

2. Consider the Company database to create a query to: 

1. List the employees who manage a department where the 

Microsoft Access Queries – Advanced  |  117



department code is provided by the person running the 
query. 

2. List all employees in some department where the 
department code is provided by the person running the 
query. 

3. Modify the employee data in the Company database so at 
least two employees have the same first and last names. 
Develop a query that lists all employees having a specific 
first name and last name that will be specified by the end 
user. 

3. Consider the Genealogy database to: 

1. Create a query with two parameters: a start date and 
an end date. The query will list all persons whose birth 
dates fall in the range from start date to end date. 

4. Consider the Library database to: 

1. Create a query to list books due on a specific date (a 
parameter). 

2. Create a query to list books written by a specific author (a 
parameter). 

6.6 CrossTab Query 

Standard Microsoft Access queries produce results with column 
headings. Crosstab queries are queries where results are displayed 
with both row and column headings similar to a spreadsheet. 
Crosstab queries can also utilize aggregate functions that can 
consolidate data into a group and displayed using row and column 
formatting styles. 

We will limit our discussion to the use of the Crosstab Query 
Wizard for creating our crosstab queries with your MyUniversity 
database. 

118  |  Microsoft Access Queries – Advanced



Example 

As an example, suppose we wish to display for each department a 
count of the number of 3 and 6 credit hour courses. The counts are 
to appear in matrix format where rows are labeled with department 
names and the columns appear with labels 3 and 6. Below is an 
outline of how the results should appear: 

3 6 

Chemistry 16 7 

Mathematic 22 11 

… … … 

Figure 6.22 Query results to appear with row and column headings 
Crosstab queries have at least three fields: one field (department 

code) is used for row labels, another field (credit hours) is used 
for column labels, and one field (course number) is used with an 
aggregate function (Count). 

We can begin by creating a simple query using the MyUniversity 
database that retrieves all the necessary values: 

Microsoft Access Queries – Advanced  |  119



Figure 6.23 Query with required fields 
Next, we save the query (say Q1) and create a new query using the 

Crosstab query wizard. The wizard prompts for 

• The table/query to use as the basis for the new crosstab query 
(the query just saved –> Q1) 

• The field to use for row labels –> deptName 
• The field to use for column labels –> creditHours 
• The field and the aggregate function to use for summarizing 

data –> courseNo / Count 

Running the query shows several columns: the department name 
(values in this column are the row labels), total over the remaining 
columns for the row, columns for credit hour values 3 and 6 (the 
column labels). For example: 

CrosstabQuery 

Dept Name Total Of courseNo 3 6 

Statistics 16 15 1 

Mathematics 18 6 12 

Figure 6.24 Standard Crosstab Query results 

6.6 Exercises 

While using your MyUniversity database, create and save the 
following Access query to: 

1. Create and run the query to display for each department a 
count of the number of 3 and 6 credit hour courses. 

120  |  Microsoft Access Queries – Advanced



2. Modify the query so that credit hour values appear as row 
labels and department names appear as column labels. 

6.7 Action Queries 

Action Query is a category that Microsoft Access uses to distinguish 
queries that can modify the data in the database. We will discuss the 
query types including: Make-Table, Append, Delete, and Update. 

To create an action query, one typically starts by creating a Simple 
Query that is subsequently changed (by clicking the pertinent 
button) to an Action Query type. You will notice that as you 
experiment running action queries, Microsoft Access gives a 
warning message asking you to confirm the changes the query will 
make to the database. It would be recommended to first make a 
backup copy of your database prior to making any database changes 
or modifying your data. The reason for the confirmation warning 
message is that you cannot click an Undo button to undo such 
changes as you can in other Microsoft Office applications.  To undo 
a database action query, you would need to design and execute a 
compensating action query if you did not first make a copy of your 
database. 

When you are in Design View for some query, you will see the 
buttons for changing the query type: 

Figure 6.25 Types of Action Queries 

Microsoft Access Queries – Advanced  |  121



Make Table Query 

Make table queries are useful if you want to use existing data when 
you create a new table. 

Consider the University database and suppose we need to create 
a table of ACS courses. We would start with a query that retrieves 
all ACS courses: 

Figure 6.26 Begin by creating a select query 
Next, we change the query to a Make-Table Query by clicking the 

Make Table button. When you do this Microsoft Access will prompt 
you for the name for your new table: 

Figure 6.27 Prompt for table name for Make-Table query 
The query does not run yet; you must either click the Run button 

or save the query and run it later. Each time you run the query, 
Microsoft Access will empty the table and insert rows into it. 

122  |  Microsoft Access Queries – Advanced



Append Query 

Suppose you wish to add rows to an existing table. To do that 
you must use an Append query. To create an Append query, begin 
by creating a Simple query that lists the information you wish to 
see inserted to the table. Once you know the query retrieves the 
proper information, click the Append button and Microsoft Access 
will prompt you for the table name that should receive the new 
rows. After this, you can run the query from the Run button, or you 
can save the query and run it later. 

Delete Query 

To remove entire rows from a table, you use a Delete query. As in the 
previous query types discussed, you can begin with a Simple query 
that retrieves the rows you wish to delete. Once the Simple query 
is working, you can change its type to Delete and run the query (or 
save it and run it later). Be careful with this delete query, a delete 
query can delete many rows in a single run. 

Update Query 

The type of query used to modify existing rows in a table is the 
Update query. In order to create such a query, you should begin 
with a Simple query that retrieves the rows that are to be updated 
and then change the type to Update. When you change the type to 
Update, Microsoft Access will add a new row to the Grid area where 
you specify the new values for each field to be updated. The new 
value can be the result from a calculation. 

Microsoft Access Queries – Advanced  |  123



Example 

Suppose we wish to update the Course table so the credit hours 
are doubled for each ACS course. Continue using the University 
database. We begin with a Simple query to retrieve the primary (PK) 
field, the fields to be updated, and the fields needed for selection 
criteria purposes. In this case, we will need a Simple query to 
retrieve the department code, course number, and credit hours 
fields: 

Figure 6.28 Simple select query with criteria 
Next, we change the query type to Update and Microsoft Access 

modifies the Grid to include an Update To line. On that line, we enter 
an expression that generates the new values. To double the credit 
hours, we need the expression [creditHours]*2, as in: 

124  |  Microsoft Access Queries – Advanced



Figure 6.29 Update query with Update To line 

6.7 Exercises 

While using your MyUniversity database, create and save the 
following Access queries: 

1. Create a table of ACS courses, but name the new table 
ScienceCourses. 

2. Does the table ScienceCourses have a primary key? If not, 
create one. 

3. Run a delete query on ScienceCourses to delete all non 
3-credit hour courses. 

4. Append all 3-credit hour MATH courses to ScienceCourses. 
5. Run an update query on ScienceCourses to double the credit 

hours of all 3-credit hour courses. 

6.8 INNER And OUTER Joins 

Whenever we use a query to retrieve data from two or more tables, 
the database query processor performs an operation called a join. 
In this section, we discuss inner joins, outer joins, and Cartesian 
products. We will also discuss some interesting special cases: self-
join, anti-join, non-equi joins. 

If we have previously established relationships between tables, 
and if we have more than one table in a query, then Microsoft Access 
will create joins based on those relationships. If necessary, we can 
alter, delete, or include new relationships. 

Microsoft Access creates joins where rows join if the join fields are 
equal in value; such joins are called equi-joins. If we create a query 

Microsoft Access Queries – Advanced  |  125



for the University database and add the Department and Course 
tables to the relationships area of the query we have: 

Figure 6.30 Standard equi-join 
If you edit the relationship line (double-click it), you see the join 

properties: 

Figure 6.31 Join properties 
Here, we can see the join is based on the common attribute 

deptCode. If you click on the Join Type button, you will get 
information on the type of join used. You will see (as the following 
diagram shows) that Access has selected the first of three options: 

126  |  Microsoft Access Queries – Advanced



Figure 6.32 Choosing inner join or outer join 
Joins can be further characterized as inner or outer joins. Option 

1 is an inner join. 
Options 2 and 3 are outer joins. One of these would also be called 

a Left Outer Join and the other a Right Outer Join. If you examine the 
SQL statement generated, you will see which is used. Left and Right 
choices are related to the textual expression of the SQL statement – 
which table name is leftmost/rightmost in the From clause. 

 

6.8.1 INNER Join 

All of the joins we have seen up to this point have been inner joins. 
For a row of one table to be included in the result of an inner join, 
the row must match a row in the other table. Because all joins so 
far have also been equi-joins, the matching is based on the values of 
the join fields of one table being equal to the values of the join fields 
of the other table. Consider the inner join between Department and 
Course based on deptCode: 

Microsoft Access Queries – Advanced  |  127



Figure 6.33 Inner join 
If the tables have the contents shown below: 

Course 

Dept 
Code 

Course 
Number Title Description Credit 

Hours 

ACS 1453 
Introduction 
to 
Computers 

This course will introduce 
students to the basic concepts 
of computers: types of 
computers, hardware, software, 
and types of application 
systems. 

3 

ACS 1803 
Introduction 
to 
Information 
Systems 

This course examines 
applications of information 
technology to businesses and 
other organizations. 

3 

128  |  Microsoft Access Queries – Advanced



Department 

Dept 
Code Dept Name Location Phone Chair 

ACS Applied Computer 
Science 3D07 (204) 

786-0300 
Simon 
Lee 

ENG English 3D05 (204) 
786-9999 

April 
Jones 

MATH Mathematics 2R33 (204) 
786-0033 

Peter 
Smith 

Figure 6.34 Table contents 
then the result of running the query is 

Dept Name Course 
Number Title 

Applied Computer 
Science 1453 Introduction to Computers 

Applied Computer 
Science 1803 Introduction to Information 

Systems 

Figure 6.35 Query result 
In the above result, notice there is no result line for English or 

Mathematics. This is because in the sample data there were no 
rows in Course that joined to the English or Mathematics rows 
in Department. Both rows in Course have a value of “ACS” in the 
deptCode field and so they joined to the ACS row in Department. 

This query demonstrates a distinguishing characteristic of the 
inner join: only rows that match other rows are included in the 
results. 

Microsoft Access Queries – Advanced  |  129



6.8.1 Exercises 

1. Consider the Library database to create a query that: 

1. Joins Loan and Member. List the member name and date 
due. 

2. Joins Loan and Book. List the book title and date due. 
3. Joins all three tables and lists the member name, book 

title, and date due. 
2. Consider the two tables A and B below. 

Table A 

X Y Z 

1 3 5 

2 4 6 

4 9 9 

Table B 

X Y Q 

1 3 5 

1 4 6 

2 4 7 

3 4 5 

1. How many rows are in the result if A and B are joined based on 
the attribute X? 

130  |  Microsoft Access Queries – Advanced



2. How many rows are in the result if A and B are joined based on 
both attributes X and Y? 

6.8.2 OUTER JOIN 

Consider the Company database to support this outer join 
information. Suppose we wanted to produce a report that lists each 
department and its employees, and must include every department. 
The two tables would be joined based on equal values of the dept 
id field. We want all departments and we know that an inner join 
will not include a department if there are no employees for the 
department to join to. To get all departments included when we are 
joining two tables, we must use an outer join. 

Consider the query that is started below: 

Figure 6.36 Initial query 
By default the join is an inner join, but with Microsoft Access, you 

can get an outer join if you edit the relationship and specify either 
option 2 or option 3, as shown in the dialogue below: 

Microsoft Access Queries – Advanced  |  131



Figure 6.37 Default property is option 1 
By choosing option 2, your query will include all departments 

whether or not the department can join to an employee. If there is 
no employee for a department to join to, then the row is joined to a 
row of nulls. When you do this, notice the change in the relationship 
line – it is now a directed line; this is how Microsoft Access 
illustrates outer joins: 

Figure 6.38 Outer join – all rows of Department 
The first few rows of the result are: 

132  |  Microsoft Access Queries – Advanced



deptId department dept lastName 

4 Special Operations 

3 Sales 3 Long 

3 Sales 3 Craft 

3 Sales 3 Watkins 

Figure 6.39 Query result 
Notice that the Special Operations department joined to a null 

row. 

6.8.2 Exercises 

1. Consider the Company database and list each department and 
the number of employees in the department. 

2. Consider the Orders database. 

1. Create a query to list each customer and their orders 
(order id and order date). Are there any customers who 
have not placed an order? 

2. Modify the above query to list each customer and the 
number of orders they have placed (include all customers). 

3. Consider the library database. 

1. Create a query that will list every book and the date it was 
borrowed. Include all books in your result. 

2. Create a query to list every library member and the dates 
they borrowed books.Include all members 

3. Try creating a query that will list books that have never 
been borrowed. 

4. Try creating a query to list any members who have not 

Microsoft Access Queries – Advanced  |  133



borrowed a book. 

6.8.3 Cartesian Product 

Suppose you create a query, but without a join criteria. This is 
easily done by clicking on the relationship line and deleting it. When 
criteria for matching rows is not present, then each row of one table 
will join to each row of the other table. 

This type of join is called a Cartesian Product and these can easily 
have very large result sets. If Department has 4 rows and Employee 
has 100 rows then the Cartesian Product has (4×100=) 400 rows. 
Databases used in practice have hundreds, thousands, even millions 
of rows; a Cartesian Product may take a long, long time to run. 

Exercises 

1. Consider the Sales database and its Store and Product tables. 
Construct a query to list the storeID and the productID. When 
you add Store and Product to the relationships area there is a 
line joining the two tables. Delete the join line. Run the query. 
Notice how many rows there are; the number of rows in the 
result set is the number of stores times the number of 
products. 

2. Consider the Sales database and its Store, Product, and Sales 
tables. Suppose we want to obtain a list that shows for each 
store and product the total quantity sold. Note that the end 
user wants to see every store and product combination. 

Hint: An approach you can use with Microsoft Access is to create 
two queries. The first of these performs a cross product of store and 
product (call this CP). 

134  |  Microsoft Access Queries – Advanced



The second query is developed as a join between the query CP and 
the table Sales. CP is outer-joined to Sales in order that every 
combination of Store and Product is in the final result. 

 

6.8.4 SELF-JOIN 

A self-join, also called a recursive join, is a case where a table is 
joined to itself. 

Consider the Company database and suppose we must obtain a 
list of employees who report to another employee named Raphael 
Delaney (i.e. List the employees Raphael Delaney supervises). To do 
this, we need to find the row in Employee for Raphael Delaney and 
then join that row to other rows of Employee where the supervisor 
field is equal to the empId field for Raphael. When we build the 
query in Microsoft Access, we simply add the Employee table to 
the relationships area twice. One copy of Employee will be named 
Employee_1. Consider the following query: 

Figure 6.40 Self-Join 
Note the following: 

• The criteria specifies the row in Employee will be that of 

Microsoft Access Queries – Advanced  |  135



Raphael Delaney 
• The join line connects supervisor to empId and so rows of 

Employee_1 will be employees who report to Raphael. 

6.8.4 Exercises 

1. Consider the Genealogy database and develop queries to 
obtain: 

1. The father of Peter Chan. 
2. The mother of Peter Chan. 
3. The father and mother of Peter Chan. 
4. The children of Peter Chan. 
5. The grandchildren of Peter Chan. 

2. Consider the Orders database and the Employee table. 

1. Write a query to list the employee who does not report to 
anyone. 

2. Write a query to list each employee and the number of 
employees they supervise. 

6.8.5 Anti-Join 

Suppose we need to list persons in our Company database that are 
not supervising anyone. One way of looking at this problem is to 
say we need to find those people that do not join to someone else 
based on the supervises relationship. That is, we need to find those 
employees whose employee id does not appear in the supervisor 
field of any employee. 

To do this with Microsoft Access, we can construct a query that 
uses an outer join to connect an employee to another employee 
based on employeeID equaling supervisor, but where the supervisor 

136  |  Microsoft Access Queries – Advanced



value is null. That is, we are looking for an employee who, in an outer 
join, does not join to another employee. See the query below: 

Figure 6.41 Anti-join query 
This query involves a join, specifically an outer join, and because 

it retrieves those rows that do not join, it is sometimes referred to 
as a special case – an anti-join. 

Exercises 

1. Consider the Genealogy database and develop a query to find 
people that do not have any sons. 

2. Consider the Genealogy database and develop a query to find 
people that do not have any daughters. 

6.8.6 Non-Equi Join 

A non-equi join is any join where the join criteria does not specify 
equals, “=”. 

Suppose we wish to list all persons in the Genealogy database 

Microsoft Access Queries – Advanced  |  137



who are younger than, say, Peter Chan. One approach to getting the 
results is to join the row for Peter Chan to another row in Person 
where the birthdate of Peter Chan is greater than the birthdate of 
the other person. This type of join would be a “greater than” join as 
opposed to an equi-join. Proceed in the following way: 

1. Add Person to the relationships area twice so there is a Person 
table and a Person_1 table. If there are any relationship lines 
delete them. 

2. In the criteria line for Person fields: for firstName type “Peter” 
and for LastName type “Chan”. 

3. In the criteria line for birthDate in Person_1 type “> 
[Person].[birthDate]” 

Figure 6.42 Non-equi join 
In this way you are creating a “greater than” join. 

3. Include attributes from Person_1 to display these younger 
people. 

4. Run your query. 

138  |  Microsoft Access Queries – Advanced



Exercises 

1. Consider the genealogy database. 

a) Run the example from above. 
b) Modify the example to list those people who are older 

than Peter Chan. 

6.9 SQL SELECT Statement 

SQL is the standard language for relational database systems. There 
are variations of SQL that appear in Object-oriented database 
systems, and elsewhere. The study of SQL (structured query 
language) is very important and the knowledge gained here is useful 
in other database environments. 

We will examine one SQL statement, the Select statement, used 
to retrieve data from a relational database. Other common data 
manipulation statements are the Insert, Update, and Delete used 
to modify or add data. Select, Insert, Update, and Delete all belong 
to the Data Manipulation Language (DML) subset of SQL. Another 
group of statements belong to the Data Definition Language (DDL) 
subset of SQL. DDL statements are used to create tables, indexes, 
and other structures and are discussed in a later section. 

The general SQL Select statement syntax: 
Select list of attributes or calculated results (1) 

From list of tables with/without join condition (2) 

Where criteria rows must meet beyond the join 
specifications (3) 

Group by list of attributes for creating groups (4) 
Order by list of attributes for ordering the results (5) 

Having criteria groups must meet (6) 

Each clause of the SQL statement has its counterpart in the 
Design View used by Access: 

Microsoft Access Queries – Advanced  |  139



(1) Attribute/calculated values are those for which Show is 
specified. If grouping is used, these must evaluate to a single 
value (group functions; grouping attribute) per group. 

(2) Tables that appear in the From clause are shown in the 
Relationships Area. 

(3) Specifications for the Where clause are found in the 
Criteria and Or rows. 

(4) Specifications for the Group By clause are made in the 
Totals row. 

(5) Specifications for sorting are made in the Sort row. 
(6) A Having clause specifies criteria that a group must 

meet to be included in the result. This clause is generated 
when you use an aggregate function with a criteria. 

When you design a query, you can switch between various views 
including SQL View. You can easily confirm through examples how 
the SQL statement is generated from Design View. For example, 
consider the following query and its SQL expression below. Note 
how Microsoft Access has used names with dot-notation to fully 
specify fields and how Access has placed one criteria rows must 
meet in a Having clause. 

SELECT Department.deptName, Course.title, 
Count(Course.creditHours) AS CountOfcreditHours 

FROM Department INNER JOIN Course ON 

140  |  Microsoft Access Queries – Advanced



Department.deptCode = Course.deptCode WHERE 
(((Course.creditHours)=3)) 

GROUP BY Department.deptName, Course.title HAVING 
(((Department.deptName)=”ACS”)) ; 

Figure 6.43 QBE and SQL SELECT statements 

Exercises 

1. Consider any of the queries from a previous section. Translate 
the query into SQL manually and then compare your result to 
what you see when you view the query in SQL View. 

2. Consider the following SQL statements and show how each 
statement would appear in Design View. You can confirm your 
result if you create a query, switch to SQL View, type the query 
statement and then switch to Design View. Unfortunately, if 
you make any syntax errors, Access will be unable to switch to 
Design View. Your database must contain the tables in the 
From clause. 

Refer to the Orders.accdb database: 
a) SELECT Products.ProductID, 

Products.ProductName, Categories.CategoryName 
FROM Categories INNER JOIN Products ON 
Categories.CategoryID = Products.CategoryID 
WHERE Categories.CategoryName = “Beverages” 
AND Products.Discontinued = Yes; 

Refer to the AutosSales.accdb database: 
b) SELECT Auto.Year, Dealer.Name, Auto.Colour, A

uto.Price 
FROM Dealer INNER JOIN Auto 
ON Dealer.DID = Auto.Did 
WHERE Auto.Colour=”blue” AND Auto.Price>10000; 

c) SELECT Auto.Year, Dealer.Name, Auto.Colour, A

Microsoft Access Queries – Advanced  |  141



uto.Price 
FROM Dealer RIGHT OUTER JOIN Auto ON 
Dealer.DID = Auto.Did 
WHERE Auto.Colour=”blue” OR Auto.Price>10000; 

6.10 SQL UNION AND UNION ALL 

The Union and Union All operators merge the results of two or more 
queries that are given as SQL SELECT statements. With Microsoft 
Access, you must switch to SQL View to use Union/Union All 

• UNION removes duplicates and sorts the results 
• UNION ALL returns all values (includes duplicates) without 

sorting 
• The output fields must be identical (number and type) for each 

SELECT. The syntax for UNION of two Select’s : 

Union Union all 

SQL SELECT Statement1 SQL SELECT Statement1 

UNION UNION ALL 

SQL SELECT Statement2 ; SQL SELECT Statement2 ; 

Figure 6.44 Union and Union ALL syntax 
Any number of SELECT statements can be united with UNION. 

A requirement for using UNION is that the queries are union-
compatible. These queries must retrieve the same number of fields, 
and fields in the same position across the multiple SELECT clauses 
must be of matching types. 

142  |  Microsoft Access Queries – Advanced



Example 

Consider the Employee table in the Company database. To list all 
names (first and last) in a single column, construct two queries: one 
to list the first names of employees and one to list the last names of 
employees. 

These two queries can be combined to produce a single list of 
names. Now, in SQL view type and run: 

Union Example 
(sorted with no duplicates) 

 
SELECT firstname FROM Employee 
UNION 
Select lastname from Employee ; 

Exercises 

1. Modify the above example so that duplicates are eliminated. 

Microsoft Access Queries – Advanced  |  143



7. Entity Relationship 
Modeling 
RON MCFADYEN 

When designing a database, it is common practice for a database 
designer to develop an Entity Relationship model and to represent 
that model in a drawing, the entity relationship diagram (ERD). In 
this chapter, we discuss the concepts required to develop an ERD 
and the Peter Chen notation. Peter Chen introduced entity 
relationship modeling in his paper The Entity-Relationship 
Model–Toward a Unified View of Data (ACM Transactions on 
Database Systems, Vol. 1, No. 1, 1976). This paper can be found 
at http://csc.lsu.edu/news/erd.pdf; it is one of the most cited 
papers in the computer field, and has been considered one of the 
most influential papers in computer science. Another later paper 
published in Software Pioneers: Contributions to Software 
Engineering (2002) is Entity-Relationship Modeling: Historical 
Events, Future Trends, and Lessons Learned and can be found 
at http://bit.csc.lsu.edu/~chen/pdf/Chen_Pioneers.pdf. 

Entity Relationship modeling is a process used to help us 
understand and document the informational requirements of a 
system as a logical or conceptual data model. When the model 
is complete, we then create a physical model in some database 
management system (DBMS); typically a relational DBMS, or 
relational database management system (RDBMS). 

7.1 Introduction 

In the entity relationship approach to modeling, we analyze system 

144  |  Entity Relationship Modeling

http://csc.lsu.edu/news/erd.pdf
http://bit.csc.lsu.edu/%7Echen/pdf/Chen_Pioneers.pdf


requirements and classify our knowledge in terms of entities, 
relationships, and attributes. 

Entities 

Entities are the things we decide to keep track of. For example, 
if one considers a system to support an educational environment, 
one is likely to decide that we need to keep track of students, 
instructors, courses, etc. Typically, entities are the people, places, 
things, and events that we need to remember something about. 

Suppose we know of four student entities and two course entities. 
For example, consider four students (say John, Amelia, Lee, and 
April) and two courses (Introduction to Art and Introduction to 
History). We can illustrate these in a number of ways: 

As tables of information: 

Figure 7.1 Entities shown as rows in table 
 
Set of student entities 

Entity Relationship Modeling  |  145



Figure 7.2 Entities shown as sets 

Relationships 

Entities can be related to one another and so we use relationships to 
describe how entities relate to one another. Continuing with our 
educational example we know that students enroll in courses, and 
so this is one of the relationships we should know about. Suppose 
we have the two courses and four students listed previously. 
Suppose also that 

◦ John and Amelia are enrolled in Introduction to Art 
◦ John and Lee are enrolled in Introduction to History 
◦ April is not enrolled in any course. 

Below, we depict four instances of the enroll-in relationship by 
drawing a line from a student to a course. Each relationship pairs 
one student with one course. 

146  |  Entity Relationship Modeling



Figure 7.3 Relationships shown as lines connecting entities 

Attributes 

Entities and relationships have characteristics that describe them. 
For instance, the students in our example are described by the 
values for their name, id number, and phone number. As we look 
back, we can see there is a student named John whose id number 
is 184 and his phone number is 283-4984. 

Courses are shown with a course title, a course number, and 
belong to a department. There is a course numbered 661 that is 
offered by the Art department and it is titled Introduction to Art. 

If we consider the enroll-in relationship, we know there is a date 
when the student enrolled in the course and a final grade that 
was awarded to the student when the course was completed. For 
instance, we could have John enrolled in Introduction to Art on July 
1, 2010 and was awarded an A+ on completion of that course. 

These characteristics that serve to describe entities and 
relationships are called attributes. We will be examining attributes 
in some detail. As we will see some attributes, such as student 
number, serve to distinguish one instance from another – each 
student has a student number distinct from any other student. 
Other attributes we consider to be purely descriptive, such as the 
name of a student – many students could have the same name. 

Entity Relationship Modeling  |  147



Notation 

There are many notations in use today that illustrate database 
designs. In this text, as is done in many database textbooks, the 
Peter Chen notation is used; other popular notations include 
IDEF1X, IE and UML. There are many similarities, and so once you 
master the Peter Chen notation it is not difficult to adapt to a 
different notation. 

The following is an example of an ERD drawn using the Peter Chen 
notation. Note the following: 

◦ Entity types are represented using rectangular shapes. 
◦ Relationship types are shown with a diamond shape. Lines 

connect the relationship type to its related entity types 
with cardinality symbols (m and n). 

◦ Attributes are shown as ovals with a line connecting it to 
the pertinent entity type or relationship type. 

Figure 7.4 An ERD in Chen notation 
The various symbols we use with the Peter Chen notation: 

148  |  Entity Relationship Modeling



Figure 7.5 Symbols used in the Chen notation 
 

7.2 Entities 

 
Entities are the people, places, things, or events that are of 

interest for a system that we are planning to build. In the previous 
section, we considered there were several entities: four students 
and two courses. 

In general, we find examples of entities when we think of people, 
places, things, or events in our area of interest: 

People: student, customer, employee 
Places: resort, city, country 
Things: restaurant, product, invoice, movie, painting, book, 

building, contract 

Entity Relationship Modeling  |  149



Events: registration, election, presentation, earthquake, 
hurricane 

Entity sets are named collections of related entities. From our 
example, we have two entity sets: 

▪ The Student entity set comprises at least the 4 
student entities: John, Amelia, Lee, and April. 

▪ The Course entity set comprises at least the 2 course 
entities: Introduction to Art and Introduction to 
History. 

Entity sets are the collections of entities of one type. We consider 
an Entity Type to be the definition of the entities in such a set. A 
common convention is to name entity types as singular nouns and 
that, at least, the first letter is capitalized. 

In an ERD entity, types are shown as named rectangular shapes. 
For example: 

The Student and Department entity types shown above are drawn 
with a simple single-line border. This means that they are regular 
(or strong) entity types that are not existence-dependent on other 
entity types (see the next section). 

7.2 Exercises 

1. Consider your educational institution. Your educational 
institution needs to keep track of its students. How many 
student entities does the institution have? You have provided 
the institution with information about you. In your opinion, 

150  |  Entity Relationship Modeling



what attributes describe these entities? 
2. Consider your place of work. The Human Resources 

department in your company needs to manage information 
about its employees. How many employee entities are there? 
What attributes describe these entities? 

3. Consider your educational institution or place of work. 

1. What are some of the entity types that would be useful? 
2. What relationships exist that relate entity types to one 

another? 
3. What attributes would be useful to describe entities and 

relationships? 
4. Draw an ERD. 

7.2.1 Weak Entities 

Sometimes we know certain entities only exist in relationship to 
others. For example, a typical educational institution comprises a 
number of departments that offer courses. So we could have a 
History department, an Art department and so on. These 
departments would design and deliver courses that students would 
register for. In this framework, the courses exist in the context of a 
department, and the identifier for a course is typically a department 
code and course number combination. So the history course, 
Introduction to History, belongs to the History department and 
it would be known by the identifier HIST-765. HIST is a code 
representing the History department and 765 is a number assigned 
to the course; other departments could have a course with that 
same number, 765. 

In these situations where the existence of an entity depends on 
the existence of another entity, we say the entity is a weak entity, 
and the corresponding entity type is a weak entity type. Weak 
entities often have identifiers that comprise multiple parts (such as 
department code and course number). Later on, we will see other 

Entity Relationship Modeling  |  151



aspects of an ERD that relate to weak entity types. At this time, we 
should be aware that weak entity types are illustrated in an ERD 
with a double-lined rectangle: 

Figure 7.6 Course as a weak entity type 
Often, when we purchase things the vendor provides, an invoice 

giving details of each item that is purchased (see the sample invoice 
below). Appearing on the invoice are detail lines specifying the 
product, the quantity and price. Invoice lines are things that exist 
only in the context of an invoice and so each invoice line is 
a weak entity; the invoice lines are existence-dependent on an 
invoice: 

Figure 7.7 Sample Invoice 
The following includes a few attributes to show how Invoice and 

Invoice Line could appear in an ERD. 

152  |  Entity Relationship Modeling



Figure 7.8 Invoices (regular entity type) and Invoice Lines (weak 
entity type) 

7.3 Attributes 

Attributes are the characteristics that describe entities and 
relationships. For example, a Student entity may be described by 
attributes including: 

student number name 
first name 
last name 
address 
date of birth 
gender 

An Invoice entity may be described by attributes including: 
invoice number 
invoice date 
invoice total 

A common convention for naming attributes is to use singular 
nouns. Further, a naming convention may require one of: 

All characters are in upper case. 
All characters are in lower case. 
Only the first character is in upper case. 
All characters are lower case, but each subsequent part of 

a multi-part name has the first character capitalized 

Entity Relationship Modeling  |  153



Using the last convention mentioned, some examples of attribute 
names: 

lastName for last name 
empLastName for employee last name 
deptCode for department code 
prodCode for product code 
invNum for invoice number 

In practice, a naming convention is important, and you should 
expect the organization you are working for to have a standard 
approach for naming things appearing in a model. A substantial 
data model will have tens, if not into the hundreds, of entity types, 
many more attributes and relationships. It becomes important to 
easily understand the concept underlying a specific name; a naming 
convention can be helpful. 

There are many ways we can look at attributes including whether 
they are atomic, composite, single-valued, etc. We consider these 
next. 

7.3.1 Atomic Attributes 

A simple, or atomic, attribute is one that cannot be decomposed 
into meaningful components. For example, consider an attribute 
for gender – such an attribute will assume values such as Male 
or Female. Gender cannot be meaningfully decomposed into other 
smaller components. 

As another example, consider an attribute for product price. A 
sample value for product price is $21.03. Of course, one could 
decompose this into two attributes where one attribute represents 
the dollar component (21), and the other attribute represents the 
cents component (03), but our assumption here is that such 
decompositions are not meaningful to the intended application or 
system. So, we would consider product price to be atomic because 
it cannot be usefully decomposed into meaningful components. 

154  |  Entity Relationship Modeling



Similarly, an attribute for the employee’s last name cannot be 
decomposed, because you cannot subdivide last name into a finer 
set of meaningful attributes. 

7.3.1 Exercises 

1. Consider that a Human Resources system must keep track of 
employees. If we are only including atomic attributes, what 
attributes would you include for the employee’s name. Some 
possibilities are first name, last name, middle name, full name. 

2. In some large organizations where there are several buildings 
and floors, we see room numbers that encode information 
about the building, floor, and room number. For example, the 
room 3C13 stands for room 13 on the third floor of the 
Centennial building. Suppose we need to include Room in an 
ERD. How would you represent the room number given that 
you must include atomic attributes only? 

7.3.2 Composite Attributes 

Consider an attribute containing an employee name which is to 
represent an employee’s complete name. For example, suppose an 
employee’s name is John McKenzie; the first name is John and the 
last name is McKenzie. It is easy to appreciate that one user may 
only need employee last names, and another user may need to 
display the first name followed by the last name, and yet another 
user may display the last name, a comma, and then the first name. If 
it’s reasonable for one to refer to the complete concept of employee 
name and to its component parts, first name and last name, then 
we can use a composite attribute. An attribute is composite if it 
comprises other attributes. To show that an attribute is composite 

Entity Relationship Modeling  |  155



and contains other attributes, we show the components as attribute 
ovals connected to the composite as in: 

Figure 7.9 Composite attribute 
Attributes can be composite and some of its component 

attributes may be composite as well (see Exercise #3). 

7.3.2 Exercises 

1. How would you use a composite attribute to model a phone 
number? 

2. Consider the previous exercise set. Show how we can include 
room number as a composite attribute that has multiple 
components. 

3. Consider an address attribute. Show that this can be modeled 
as a multi-level composite attribute where the component 
attributes include street, city, province, country and where 
street includes apartment number, street number, street name. 

7.3.3 Single-Valued Attributes 

We characterize an attribute as being single-valued if there is only 
one value at a given time for the attribute. 

Consider the Employee entity type for a typical business 
application where we need to include a gender attribute. Each 

156  |  Entity Relationship Modeling



employee is either male or female, and so there is only one value to 
store per employee. In this case, we have an attribute that is single-
valued for each employee. Single- valued attributes are shown with 
a simple oval as in all diagrams up to this point. In all of our examples 
so far, we have assumed that each attribute was single-valued. 

7.3.3 Exercises 

1. A college or university will keep track of several addresses for a 
student, but each of these can be named differently: for 
example, consider that a student has a mailing address and a 
home address. Create an ERD for a student entity type with 
two composite attributes for student addresses where each 
comprises several single-valued attributes. 

2. Consider a marriage entity type and attributes marriage date, 
marriage location, husband, wife. Each marriage will only have 
one value for each of these attributes. Illustrate the marriage 
entity and its single-valued attributes in an ERD . 

7.3.4 Multi-Valued Attributes 

Now, suppose someone proposes to track each employee’s 
university degrees with an attribute named empDegree. Certainly 
many employees could have several degrees and so there are 
multiple values to be stored at one time. Consider the following 
sample data for three employees: each employee has a single 
employee number and phone number, but they have varying 
numbers of degrees. 

 

Entity Relationship Modeling  |  157



empNum empPhone empDegree 

123 233-9876 

333 233-1231 BA, BSc, PhD 

679 233-1231 BSc, MSc 

Figure 7.10 Employees – number, phone, degrees 
For a given employee and point in time, empDegree could have 

multiple values as is the case for the last two employees listed above. 
In this case, we say the attribute is multi-valued. 

Multi-valued attributes are illustrated in an ERD with a double-
lined oval. 

Figure 7.11 Employee degrees shown as multi-valued 
We can use multi-valued attributes to (at least) document a 

requirement, and at a later time, refine the model replacing the 
multi-valued attribute with a more detailed representation. The 
presence of a multi-valued attribute indicates an area that may 
require more analysis; multi-valued attributes are discussed again 
in Chapter 10. 

7.3.4 Exercises 

1. Consider the employee entity type. 

1. Suppose the company needs to track the names of 

158  |  Entity Relationship Modeling



dependents for each employee. Show the dependent name 
as a multi-valued attribute. 

2. Modify your ERD to show empDependentName as a 
composite multi-valued attribute comprising first and last 
names and middle initials. 

2. Create an ERD that avoids the multi-valued attribute 
empDegrees in the previous example. Hint: Consider including 
another entity type and a relationship for keeping track of 
degrees. 

7.3.5 Derived Attributes 

If an attribute’s value can be derived from the values of other 
attributes, then the attribute is derivable, and is said to be 
a derived attribute. For example, if we have an attribute for birth 
date then age is derivable. Derived attributes are shown with a 
dotted lined oval. 

Figure 7.12 Age is a derived attribute 
Sometimes an attribute of one entity type is derived from 

attributes from other entity types. Consider the attribute for the 
total of an Invoice. A value of InvTotal is derivable; it can be 
computed from invoice lines. Someone who implements a database 
and applications that access the database would need to decide 
whether the value of a derivable attribute should be computed when 
the entity is stored or updated versus computing the value (on-the-
fly) when it is needed. 

Entity Relationship Modeling  |  159



7.3.5 Exercises 

1. Consider an educational environment where the institution 
tracks the performance of each student. Often this is called the 
students overall average, or overall grade point average. Is such 
an attribute a derived attribute? How is its value determined? 

2. Consider a library application that needs to keep track of 
books that have been borrowed. Suppose there is an entity 
type Loan that has attributes bookID, memberID, 
dateBorrowed and dateDue. Suppose the due date is always 2 
weeks after the borrowed date. Show Loan and its attributes in 
an ERD. 

7.3.6 Key Attributes 

Some attributes, or combinations of attributes, serve to identify 
individual entities. For instance, suppose an educational institution 
assigns each student a student number that is different from all 
other student numbers. We say the student number attribute is 
a key attribute; student numbers are unique and distinguish 
students. 

In an ERD, keys are shown underlined: 

Figure 7.13 Key attribute is underlined 
We define a key to be a minimal set of attributes that uniquely 

identify entities in an entity type. By minimal we mean that all of 
the attributes are required – none can be omitted. For instance, a 
typical key for an invoice line entity type would be the combination 

160  |  Entity Relationship Modeling



of invoice number and invoice line number. Both attributes are 
required to identify a particular invoice line. 

It is not unusual for an entity type to have several keys. For 
instance, suppose an educational institution has many departments 
such as Mathematics, Physics, and Computer Science. Each 
department is given a unique name and as well the institution 
assigns each one a unique code: MATH, PHYS, and CS. Both 
attributes would be underlined to show this in the ERD: 

Figure 7.14 Multiple key attributes 

7.3.6 Exercises 

1. Suppose a company that sells products has a product entity 
type with the following attributes: prodNum, prodDesc, 
prodPrice. Suppose all three attributes are single-valued and 
that prodNum is a key attribute – each product has a different 
product number. Illustrate this information in an ERD. 

2. Consider a banking application where each account is 
identified first by an account number and then by its type 
(Savings, Checking, and Loan). This scheme allows the 
customer to remember just one number instead of three, and 
then to pick a specific account by its type. Other attributes to 
be considered are the date the account was opened and the 
account’s current balance. Draw an ERD for the entity type 
Account with the attributes account number, account type, 
date opened, current balance. What is the key of the entity 
type? Is there an attribute that is likely a derived attribute? 

Entity Relationship Modeling  |  161



Show these attributes appropriately in the ERD. 

7.3.7 Partial Key 

Sometimes we have attributes that distinguish entities of an entity 
type from other entities of the same type, but only relative to some 
other related entity. This situation arises naturally when we model 
things like invoices and invoice lines. If invoice lines are assigned 
line numbers (1, 2, 3, etc.), these line numbers distinguish lines on 
a single invoice from other lines of the same invoice. However, for 
any given line number value, there could be many invoice lines (from 
separate invoices) with that same line number. 

A partial key (also called a discriminator) is an attribute that 
distinguishes instances of a weak entity type relative to a strong 
entity. Invoice line number is a partial key for invoice lines; each 
line on one invoice will have different line numbers. Using the Peter 
Chen notation the discriminator attribute is underlined with a 
dashed line: 

Figure 7.15 Line number distinguishes lines on the same invoice 

Later when relationships are covered, it will be clearer that 
attributes for relationships can be discriminators too. Consider that 
a library has books that members will borrow. Any book could be 

162  |  Entity Relationship Modeling



borrowed many times and even by the same member. However 
when a member borrows the same book more than once the date/
time will distinguish those events. Consider the following ERD for 
this case: 

Figure 7.16 Relationship attribute as a discriminator 

7.3.7 Exercises 

1. Consider an educational institution that has departments and 
where each department offers courses. Suppose departments 
are assigned unique identifiers and so deptCode is a key for 
the department entity type. Courses are identified within a 
department by a course number; course numbers are unique 
within a department but not across departments. So, History 
may have a course numbered 215, and English could have a 
course numbered 215 too. In order to identify a particular 
course we need to know the department and we need to know 
the course number. Illustrate an ERD including department 
and course entity types. Include attributes for the Department 
(department code and department name), and for Course 
(course number, title, and description). 

2. Consider a company that owns and operates parking lots. 

Entity Relationship Modeling  |  163



Develop an ERD with two entity types Parking Lot and Space 
and where: 

◦ The address of a parking lot serves to identify the lot. 
◦ Each space within a lot is rented at the same monthly 

rental charge. 
◦ Each parking space is known by its number within the lot 

(within a lot these always start at 1). 
◦ Each parking space is rented out to at most one vehicle. 

The vehicle’s identifier must be recorded. The identifier 
comprises a province code and license plate number. 

7.3.8 Surrogate Key 

When a key specified for an entity is meaningless to the entity and 
to end-users (it doesn’t describe any characteristic of an entity), the 
key is referred to as a surrogate key. A key that is not a surrogate key 
is often referred to as a natural key. Often a surrogate key is just a 
simple integer value assigned by the database system. 

When database designs are implemented surrogate keys can be 
useful to simplify references from one table to another (referential 
integrity) and the associated joins when tables are referenced in 
queries. 

7.3.8 Exercise 

1. Assuming you have experience with some database system, what 
data type would you use for surrogate keys? 

164  |  Entity Relationship Modeling



7.3.9 Non-Key Attributes 

Non-key attributes are attributes that are not part of any key. 
Generally, most attributes are simply descriptive, and fall into this 
category. Determining key and non-key attributes is an important 
modeling exercise, one that requires careful consideration. 
Consider an Employee entity type that has attributes for first name, 
last name, birth date; these attributes would serve to describe an 
employee but would not serve to uniquely identify employees. 

People may join an organization and their name is not likely 
unique for the organization; we expect many people in a large 
organization to have the same first name, same last name, and even 
the same combination of first and last name. Names cannot usually 
be used as a key. 

However, names chosen for entities such as departments in an 
organization could be keys because of the way the company would 
choose department names – they wouldn’t give two different 
departments the same name. 

7.3.9 Exercises 

1. Consider an employee entity type and its attributes, and 
decide which attributes are key attributes and which ones are 
non-key attributes. Illustrate with an ERD. 

2. A birthdate attribute would appear for many entity types – for 
example students, employees, children. What is a birthdate 
likely to be: key or non-key? 

3. Consider a library and the fact that books are loaned out to 
library members. Dates could be used heavily for the date a 
book was borrowed, the date the book was returned, and the 
due date for a book. Consider an entity type Loan that has 
attributes book identifier, member identifier, date borrowed, 

Entity Relationship Modeling  |  165



date due, date returned. What combination of attributes would 
be a key? Which attributes are key attributes? Which 
attributes are non-key attributes? 

7.3.10 Nulls 

When a database design is implemented, one of the important 
things to know for each attribute of an entity type is whether or 
not that attribute must have a value. For example, when a book is 
borrowed from a library, the date the book is borrowed is known, 
but the returned date is not known. Sometimes you will not know 
the value of an attribute until a certain event occurs. 

Consider an educational environment and when a student 
registers for a course. The date the student registers would be 
known, but the grade is yet to be determined. 

When an entity is created but some attribute does not have a 
value we say it is null. Null represents the absence of a value; null is 
different from zero or from blank. 

7.3.11 Domains 

To complete the analysis for a database design, it is necessary to 
determine what constitutes a valid value for an attribute. A 
domain for an attribute is its set of valid values which includes a 
choice of datatype, but a full specification of domain is typically 
more than that. 

For instance, analysis for student identifiers may lead one to state 
that a student identifier is a positive whole number of exactly 7 
digits with no leading zeros. The analysis of requirements for person 
names may lead one to state that the values stored in a database for 
a first name, last name, or middle name will not be more than 50 

166  |  Entity Relationship Modeling



characters in length, and that names will not have any spaces at the 
beginning or end. 

For each attribute, one must determine its domain. More than 
one attribute can share the same domain. Knowing the underlying 
domains in your model is important. They help to complete your 
analysis, they are indispensable for coding programs, and they are 
useful for defining meaningful error messages. 

Attribute domains are not usually shown in an ERD. Rather, 
domains are included in accompanying documentation which can 
be referred to when the database is being implemented. 

7.4 Relationships 

Up to this point, we have made several references to the concept of 
relationship. Now, we will make our understanding of this concept 
more complete. A relationship is an association amongst entities. 
Relationships will have justification in business rules, in the way an 
enterprise manages its business. 

There are several ways of classifying relationships, according 
to degree, participation, cardinality, whether recursion is involved, 
and whether or not a relationship is identifying. 

7.4.1 Degree 

We consider the degree as the number of entities that participate in 
the relationship. When we speak of a student enrolling in a course, 
we are considering a relationship (say, the enroll in relationship) 
where two entity types (Student and Course) are involved. This 
relationship is of degree 2 because each instance of the relationship 
will always involve one student entity and one course entity. 

Entity Relationship Modeling  |  167



Figure 7.17 Binary relationship involves two entity types 

With binary relationships, there must be two defining statements 
we can express, one from the perspective of each entity type. In this 
case, our statements are: 

• A student may enroll in any number of courses. 
• A course may have any number of students enrolled. 

Many database modeling tools only support binary relationships. 
However, there are situations where relationships of higher degree 
are useful. A relationship involving 3 entity types is called ternary; 
more generally, we refer to relationships with n entity types as n-
ary. Our primary focus in this text is on binary relationships. 

7.4.2 Participation 

Suppose, we are designing a database for a company that has several 
departments and employees. Each employee must also be assigned 
to work in one department. We can define a works in relationship 
involving Department and Employee. Employees must participate in 
the relationship and we show this using a double line joining the 
diamond symbol to the Employee entity type. 

168  |  Entity Relationship Modeling



Figure 7.18 Employee must work in a department 

The double line stands for total or mandatory participation which 
means that instances of the adjacent entity type must participate in 
the relationship – in the case above, all instances of Employee must 
be assigned to some department. Any time we show a single line we 
are stating participation is optional; for the above we are saying that 
a department will have zero or more employees who work there. 

Cardinality 

Cardinality is a constraint on a relationship specifying the number 
of entity instances that a specific entity may be related to via the 
relationship. Suppose we have the following rules for departments 
and employees: 

• A department can have several employees that work in the 
department 

• An employee is assigned to work in one department. From 
these rules, we know the cardinalities for the works 
in relationship and we express them with the cardinality 
symbols 1 and n below. 

Figure 7.19 One-to-many relationships are most common 

The n represents an arbitrary number of instances, and 
the 1 represents at most one instance. For the above works in 
relationship. we have 

Entity Relationship Modeling  |  169



• a specific employee works in at most only one department, and 
• a specific department may have many (zero or more) 

employees who work there. 

n, m, N, and M are common symbols used in ER diagrams for 
representing an arbitrary number of occurrences; however, any 
alphabetic character will suffice. 

Based on cardinality, there are three types of binary relationships: 
one-to-one, one-to-many, and many-to-many. 

One-to-One 

One-to-one relationships have 1 specified for both cardinalities. 
Suppose, we have two entity types: Driver and Vehicle. Assume that 
we are only concerned with the current driver of a vehicle, and 
that we are only concerned with the current vehicle that a driver 
is operating. Our two rules associate an instance of one entity type 
with at most one instance of the other entity type: 

a driver operates at most one vehicle, and 
a vehicle is operated by at most one driver. 

and so the relationship is one-to-one. 

Figure 7.20 One-to-one relationship 

One-to-Many 

One-to-many relationships are the most common ones in database 

170  |  Entity Relationship Modeling



designs. Suppose, we have customer entities and invoice entities 
and: 

• an invoice is for exactly one customer, and 
• a customer could have any number (zero or more) of invoices 

at any point in time.Because one instance of an Invoice can 
only be associated with a single instance of Customer, and 
because one instance of Customer can be associated with any 
number of Invoice instances, this is a one-to-many 
relationship: 

Figure 7.21 One-to-many relationship 

Many-to-Many 

Suppose we are interested in courses and students and the fact that 
students register for courses. Our two rule statements are: 

• any student may enroll in several courses, 
• a course may be taken by several students. 

This situation is represented as a many-to-many relationship 
between Course and Student: 

Entity Relationship Modeling  |  171



Figure 7.22 Many-to-many relationship 

As will be discussed again later, a many-to-many relationship is 
implemented in a relational database in a separate relation. In a 
relational database for the above, there would be three relations: 
one for Student, one for Course, and one for the many-to-many. 
(Sometimes this 3rd relation is called an intersection table, a 
composite table, a bridge table.) 

Partly because of the need for a separate structure when the 
database is implemented, many modelers will ‘resolve’ a many-to-
many relationship into two one-to-many relationships as they are 
modeling. We can restructure the above many-to-many as two one-
to-many relationships where we have ‘invented’ a new entity type 
called Enrollment: 

A student can have many enrollments, and each course may have 
many enrollments. An enrollment entity is related to one student 
entity and to one course entity. 

Figure 7.23 Many-to-many becomes two one-to-many relationships 

7.4.4 Recursive Relationships 

A relationship is recursive if the same entity type appears more than 
once. A typical business example is a rule such as “an 
employee supervises other employees”. The supervises relationship 
is recursive; each instance of supervises will specify two employees, 
one of which is considered a supervisor and the other 
the supervised. 

172  |  Entity Relationship Modeling



In the following diagram, the relationship symbol joins to the 
Employee entity type twice by two separate lines. Note the 
relationship is one-to-many: an employee may supervise many 
employees, and, an employee may be supervised by one other 
employee. 

Figure 7.24 Recursive relationship involving Employee twice 

With recursive relationships, it is appropriate to name the roles 
each entity type plays. Suppose we have an instance of the 
relationship: 

John supervises Terry 
Then with respect to this instance, John is 

the supervisor employee and Terry is the supervised employee. We 
can show these two roles that entity types play in a relationship by 
placing labels on the relationship line: 

Figure 7.25 Recursive relationship with role names 

This one-to-many supervises relationship can be visualized as a 
hierarchy. In the following, we show five instances of the 
relationship: John supervises Lee, John supervises Peter, Peter 
supervises Don, Peter supervises Mary, and John supervises Noel. 

Entity Relationship Modeling  |  173



Figure 7.26 The supervising hierarchy 

In the above example, note the participation constraint at both 
ends of supervises is optional. This has to be the case because some 
employee will not be supervised, and, for some employees there are 
no employees they supervise. 

Generally, recursive relationships are difficult to master. Some 
other situations where recursive relationships can be used: 

• A person marries another person 
• A person is the parent of a person 
• A team plays against another team 
• An organizational units report to another organizational unit 
• A part is composed of other parts. 

7.4.5 Identifying Relationships 

When entity types were first introduced, we discussed an example 
where a department offers courses and that a course must exist 
in the context of a department. In that case, the Course entity 
type is considered a weak entity type as it is existence-dependent 
on Department. It is typical in such situations that the key of the 
strong entity type is used in the identification scheme for the weak 

174  |  Entity Relationship Modeling



entity type. For example, courses could be identified as MATH-123 
or PHYS-329, or as Mathematics-123 or Physics-329. In order to 
convey the composite identification scheme for a weak entity type, 
we specify the relationship as an identifying relationship which is 
visualized using a double-lined diamond symbol: 

Additionally, in situations where we have an identifying relationship, 
we usually have 

• a weak entity type with a partial key 
• a weak entity type that must participate in the relationship 

(total participation) and so the ERD for our hypothetical 
educational institution could be: 

Figure 7.27 An identifying relationship 

Note the keys for the strong entity type appear only at the strong 
entity type. The identifying relationship tells one that a department 
key will be needed to complete the identification of a course. 

Entity Relationship Modeling  |  175



Exercises 

1. Consider a company that owns and operates parking lots. Draw 
an ERD to include the following specifications. Each parking lot 
has a unique address (use the typical fields for addresses) and 
each parking lot has a certain number, say n, of parking spaces. 
Each space in a lot has a number between 1 and n. The cost of 
renting a parking space is the same for all spaces in a lot. The 
company rents individual spaces out to its customers. Each 
customer is identified by a driver’s license id, has a first and 
last name. Each customer will identify possibly several cars 
that they will park in the space rented to them. For each car 
the company needs to know the year, make, model, color and 
its license plate number. 

2. Modify your model from the previous question to allow for 
scrambled parking. By this we mean that a customer is rented 
a space in a lot, but the customer may park in any available 
space. 

3. Draw an ERD involving employees and their dependents where 
each employee has a unique id number and where dependents 
of the same employee are numbered starting at 1. It may be 
rare, but we will allow for dependents of the same employee to 
have the same name and birthdates. Include typical attributes 
for an employee, and for a dependent include the birthdate, 
first and last names. 

4. Draw an ERD for marriages between two people. For persons 
include birthdate, first name, last name, and a unique person 
id. Consider marriage to be a relationship between two people 
and suppose we want our model to allow for people to have 
more than one marriage. Use the date of the marriage as a 
discriminator. 

5. Consider marriages again but now let marriage be an entity 
type. Suppose when people marry there is a marriage 
certificate that is granted by a government authority. Include 

176  |  Entity Relationship Modeling



attributes applicable to a marriage. 
6. Suppose we are modeling marriage as a relationship between 

two people. When, or under what circumstances, can we 
model this as a one-to-one relationship? 

7. Draw an ERD that allows for marriages between possibly more 
than two people. 

8. Consider the one-to-one operates relationship in this chapter. 
Modify the example so that drivers have attributes: driver 
license, name (which comprises first name and last name), and 
vehicles have attributes: license plate number, VIN, year, 
colour, make and model. Note thatVIN stands for vehicle 
identification number and this is unique for each vehicle. 
Assume that each driver must be assigned to a vehicle. 

9. Consider the enroll in relationship used in this chapter. 
Suppose we must allow for a student to repeat a course to 
improve their grade. Develop an ERD and include typical 
attributes for student, course, etc. We need to keep a complete 
history of all course attempts by students. 

10. What problems arise if one makes the supervises relationship 
mandatory for either the supervising employee or the 
employee who is supervised? 

11. Consider requirements for teams, players and games, and 
develop a suitable ERD. Each team would have a unique name, 
have a non-player who is the coach, and have several players. 
Each player has a first and last name and is identified by a 
number (1, 2, 3, etc.). One player is designated the captain of 
the team. Assume a game occurs on some date and time, and is 
played by two teams where one team is called the home team 
and the other team is called the visiting team. At the end of the 
game the score must be recorded. 

12. Modify your ERD for the above to accommodate a specific 
sport such as curling, baseball, etc. 

13. Consider an ERD for modelling customers, phones, and phone 
calls. Each customer owns one phone and so the phone 
number identifies the customer. Include other attributes such 

Entity Relationship Modeling  |  177



as credit card number, first name, and last name for a 
customer. We must record information for each phone call that 
is made: for each call there is a start time, end time, and of 
course the phone number/customers involved. 

14. Create an ERD suitable for a database that will keep genealogy 
data. Suppose there is one entity type Person and you must 
model the two relationships: marries and child of. 

15. Develop an ERD to support home real estate sales. Consider 
there are several sales employees who list and sell properties. 
For each employee we need to know their name (first and last), 
the date they started working for this company, and the 
number of years they have been with the company. Each 
property has owners (one or more people), and may have 
certain features such as number of baths, number of levels, 
number of bedrooms. For each owner we must keep track of 
their names (first and last). Each property has an address; each 
address has the usual attributes: street (comprising apartment 
number, street number, street name), city, province, and postal 
code. A home is listed at a certain price and sold at possibly a 
different price. Of course, we need to track the names of the 
buyers, the date of a listing and the date of a sale. 

16. Develop an ERD to keep track of information for an 
educational institution. Assume each course is taught by one 
instructor, and an instructor could teach several courses. For 
each instructor suppose we have a unique identifier, a first 
name, a last name, and a gender. Each course belongs to 
exactly one department. Within a department courses are 
identified by a course number. Departments are identified by a 
department code. 

17. Develop an ERD to allow us to keep information on a survey. 
Suppose a survey will have several questions that can be 
answered true or false. Over a period of time the survey is 
conducted and there will be several responses. 

18. Modify the ERD above to allow for surveys that have multiple 
choice answers. 

178  |  Entity Relationship Modeling



19. Develop an ERD to support the management of credit cards. 
Each credit card has a unique number and has a customer 
associated with it. A customer may have several credit cards. 
The customer has a first name, last name, and an address. Each 
time a customer uses a credit card we must record the time, 
the date, the vendor, and the amount of money involved. 

20. Modify the ERD for the above to accommodate the monthly 
billing of customers. Each month a customer receives a 
statement detailing the activity that month. 

21. Develop an ERD to be used by a company to manage the orders 
it receives from its customers. Each customer is identified 
uniquely by a customer id; include the first name, last name, 
and address for each customer. The company has several 
products that it stocks and for which customers place orders. 
Each product has a unique id, unique name, unit price, and a 
quantity on hand. At any time a customer may place an order 
which will involve possibly many products. For each product 
ordered the database must know the quantity ordered and the 
unit price at that point in time. If the customer does this 
through a phone call then an employee is involved in the call 
and will be responsible for the order from the company side. 
Some orders are placed via the internet. For each order an 
order number is generated. For each order the database must 
keep track of the order number, the date the order was placed 
and the date by which the customer needs to receive the 
goods. 

Entity Relationship Modeling  |  179



8. Mapping an ERD to a 
Relational Database 
RON MCFADYEN 

We use an Entity Relationship Diagram to represent the 
informational needs of a system. When we are convinced it is 
satisfactory, we map the Entity Relationship Diagram (ERD) to a 
relational database and implement it as a physical database. In 
general, relations are used to hold entity sets and to hold 
relationship sets. The considerations to be made are listed below. 
After we present the mapping rules, we illustrate their application 
in a few examples. 

8.1 MAPPING RULES 

To complete the mapping from an Entity Relationship Diagram 
(ERD) to relations, we must consider the entity types, relationship 
types, and attributes that are specified for the model. 

Entity Types 

Each entity type is implemented with a separate relation. Entity 
types are either strong entity types or weak entity types. 

1. Strong Entities 

Strong, or regular, entity types are mapped to their 

180  |  Mapping an ERD to a Relational
Database



own relation. The primary key (PK) is chosen from the 
set of keys available. 

2. Weak Entities 

Weak entity types are mapped to their own relation, 
but the primary key of the relation is formed as 
follows. If there are any identifying relationships, 
then the PK of the weak entity is the combination 
of the PKs of entities related through identifying 
relationships and the discriminator of the weak entity 
type. Otherwise, the PK of the relation is the PK of the 
weak entity. 

Relationship Types 

The implementation of relationships involves foreign keys. Recall, as 
discussed in point 1) above. If the relationship is identifying, then 
the primary key of an entity type must be propagated to the relation 
for a weak entity type. We must consider both the degree and the 
cardinality of the relationship. In the following examples. examples 
1 – 3 deal with binary relationships and example 4 concerns n-ary 
relationships. 

1. Binary One-To-One 

In general, with a one-to-one relationship, a designer 
has a choice regarding where to implement the 
relationship. One may choose to place a foreign key in 
one of the two relations, or in both. Consider placing 
the foreign key such that nulls are minimized. If there 
are attributes on the relationship, those can be 
placed in either relation. 

Mapping an ERD to a Relational Database  |  181



2. Binary One-To-Many 

With a one-to-many relationship, the designer must 
place a foreign key in the relation corresponding to 
the ‘many’ side of the relationship. Any other 
attributes defined for the relationship are also 
included on the ‘many’ side. 

3. Binary Many-To-Many 

A many-to-many relationship must be implemented 
with a separate relation for the relationship. This new 
relation will have a composite primary key 
comprising the primary keys of the participating 
entity types and any discriminator attribute, plus 
other attributes of the relationship if any. 

4. n-ary, n>2 
A new relation is generated for an n-ary relationship. 

This new relation has a composite primary key comprising 
the n primary keys of the participating entity types and any 
discriminator attribute, plus any other attributes. There is 
one exception to the formation of the PK: if the cardinality 
related for any entity type is 1, then the primary key of that 
entity type is only included as a foreign key and not as part 
of the primary key of the new relation. 

Attributes 

All attributes, with the exception of derived and composite 
attributes, must appear in relations. You choose to include 
derived attributes if their presence will improve 
performance. In the following we consider attributes 

182  |  Mapping an ERD to a Relational Database



according to whether they are simple, atomic, multi-
valued, or composite. 

4. Simple, atomic 

These are included in the relation created for the 
pertinent entity type, many-to-many relationship, 
or n-ary relationship. 

5. Multi-valued 

Each multi-valued attribute is implemented using a 
new relation. This relation will include the primary 
key of the original entity type. The primary key of the 
new relation will be the primary key of the original 
entity type plus the multi-valued attribute. Note that 
in this new relation, the attribute is no longer multi-
valued. 

6. Composite and Derived attributes are not included. 

The above constitutes the standard rules for mapping an ERD to 
relations. A designer may make other choices but one expects there 
would be good reasons for doing so. 

8.2 Examples 

Example 1 

Consider the ERD 

Mapping an ERD to a Relational Database  |  183



 
The mapping rules lead to the relations: 

Notes: 

• The Member relation does not have a composite attribute
name. 

• Since Borrows is a many-to-many relationship the Borrow 
relation is defined with a composite primary key 
{memberId, bookId, dateTimeBorrowed}. 

• memberId in the Borrow relation is a foreign key referencing 
Member. 

• bookId in the Borrow relation is a foreign key referencing Book. 

184  |  Mapping an ERD to a Relational Database



Example 2 

Consider the ERD 

The mapping rules lead to the relation: 

Notes: 

• The attribute supervisor is a foreign key referencing Employee. 
• A foreign key is placed on the ‘many’ side of a relationship and 

so in this case the foreign key references the employee who is 
the supervisor (the role name on the ‘one’ side); hence the 
name supervisor was chosen as the attribute name. 

Example 3 

Consider the ERD 

Mapping an ERD to a Relational Database  |  185



The mapping rules lead to the relations. 

Notes: 

• deptCode was chosen as the primary key of Department. 

• deptName is a key and so a unique index can be defined to 
ensure uniqueness. 

• Since Course is a weak entity type and is involved in an 
identifying relationship, the primary key of Course is 
composite comprising {deptCode, courseNo}. 

• deptCode in Course is a foreign key referencing Department. 

Exercises 

1. Map the ERD to relations. 

 

2. Map the ERD to relations. 

186  |  Mapping an ERD to a Relational Database



3. Map the ERD to relations. 

Mapping an ERD to a Relational Database  |  187



9. Data Definition Language 
(DDL) 
RON MCFADYEN 

Many of the tools available for constructing entity relational 
diagrams (ERDs) are capable of generating data definition language 
(DDL) commands that are used for creating tables, indexes, and 
relationships. You can find many references easily to DDL. For 
instance, if you are interested try http://en.wikipedia.org/wiki/
Data_Definition_Language, or enter the phrase Data Definition 
Language in your favorite search engine. 

9.1 Running DDL In Microsoft Access 

Most database systems provide a way for you to run data definition 
language commands. When such facility exists, it can be relatively 
easy to create and re-create databases from a file of DDL 
commands. One way to run DDL commands in Microsoft Access is 
through a query that is in SQL View. To run a DDL command, we 
follow these two steps: 

◦ Open a database and choose to create a query, and then 
instead of adding tables to your query, you just close the 
Show Table window: 

188  |  Data Definition Language (DDL)

http://en.wikipedia.org/wiki/Data_Definition_Language
http://en.wikipedia.org/wiki/Data_Definition_Language


Figure 9.1 Close the Show Table window with no tables selected 

◦ Then, choose SQL View and you will be able to type a DDL 
command or paste one in : 

Figure 9.2 Choose SQL view for the query 

Data Definition Language (DDL)  |  189



9.2 Example 

In this chapter, we will creating tables and modifying tables for a 
new Library-DDL database using DDL. In Access, create a new blank 
database named Library-DDL database to apply your DDL skills. 
Suppose we require the three tables: Book, Patron, Borrow: 

Figure 9.3 Sample database to create 
The above diagram (produced from the Relationships Tool) 

represents the database we wish to create but where we will do so 
using DDL commands. 

9.2.1 DDL Commands 

We will illustrate three DDL commands (create table, alter table, 
create index) as we create tables and modify tables using the Library 
database. 

190  |  Data Definition Language (DDL)



Figure 9.4 Data Definition Commands 
In some database environments, we can run more than one 

command at a time. The commands would be located in a file and 
would be submitted as a batch to be executed. 

Before applying these DDL commands, verify that you have 
created a new blank Access database named Library-DDL. In the 
following, we will demonstrate SQL syntax commands supporting 
Microsoft Access and run one command at a time. 

9.2.2 Creating and Modifying  Database Tables 

Example 1 

Consider the following create table command which is used to 
create a table named Book. The table has two fields:  callNo and title. 

CREATE TABLE Book 
( 
callNo Text(50), 
title Text(100) 
) 
; 

The command begins with the keywords CREATE TABLE. It’s usual 
for keywords in DDL to be written in upper case, but it’s not 
required to do so. The command is just text that is parsed and 
executed by a command processor. If humans are expected to read 
the DDL then the command is typically written on several lines as 
shown, one part per line. 

Data Definition Language (DDL)  |  191



Example 2 

Now consider the following CREATE TABLE command which 
creates a table and establishes an attribute as the primary key: 

CREATE TABLE Patron 
( 
PatronID Number NOT NULL PRIMARY KEY, 
lastName Text(50), 
firstName Text(50) 
); 

Example 3 

The primary key of Patron is the patronId field. Notice the data type 
is shown as Counter. After running this command you will be able to 
see that the Counter data type is transformed to AutoNumber. 

Our last example of the create table command is one that creates 
a table, sets its primary key and also creates a foreign key reference 
to another table: 

CREATE TABLE Borrow 
( 
patronId Number, 
callNo Text(50), 
dateDue DATETIME, 
returned YESNO, 
PRIMARY KEY (patronId, callNo, dateDue), FOREIGN KEY 
(patronId) REFERENCES Patron 
) 
; 

There are several things to notice in the above command: 

• The primary key is composite and so it is defined in a separate 
PRIMARY KEY clause. 

192  |  Data Definition Language (DDL)



• The data type of patron id must match the data type used in 
the Patron table and so the data type is defined as Integer. 

• The dateDue field will hold a due date and so its data type is 
defined as DATE/TIME. 

• The returned field will hold a value to indicate whether or not 
a book has been returned and so its data type is defined as 
YES/NO. 

• A row in the Borrow table must refer to an existing row in 
Patron and so we establish a relationship between Borrow and 
Patron using the FOREIGN KEY clause. After running this 
create table command you can see the relationship in Access 
by opening the Relationships Tool. 

Example 4 

The Book table was created previously, but there is no specification 
for a primary key. To add a primary key, we use the ALTER TABLE 
command as shown below. 

ALTER TABLE Book 
ADD PRIMARY KEY (callNo) 
; 

Example 5 

Now that Book has a primary key, we can define the relationship 
that should exist between Borrow and Book. To do so, we use the 
ALTER TABLE command again: 

ALTER TABLE Borrow 
ADD FOREIGN KEY (callNo) 
REFERENCES Book (callNo) 
; 

Data Definition Language (DDL)  |  193



Example 6 

Notice that the Patron table does not have a gender attribute. To 
add this later on, we can use the ALTER TABLE command: 

ALTER TABLE Patron ADD 
COLUMN gender Text(6) 
; 

Example 7 

For performance reasons, we can add indexes to a table. DDL 
provides CREATE INDEX and DROP INDEX commands for managing 
these structures. To create an index for Patron on the combination 
last name and first name, we can execute: 

CREATE INDEX PatronNameIndex ON Patron (LastName, 
FirstName); 

Example 8 

To remove the above index, we need to identify the index by name: 
DROP INDEX PatronNameIndex ON Patron; 

Example 9 

To remove a table, we use the DROP TABLE command. 
DROP TABLE Person; 

194  |  Data Definition Language (DDL)



DDL Exercises 

Complete the following exercises using the Library database. 

1. Try running the commands in Examples 1 through 3. After 
running each DDL statement, open the corresponding table in 
Design View and verify that the statement worked as intended. 

2. Try running the commands in Examples 4 through 6. After 
running each DDL statement, open the corresponding table in 
Design View and verify that the statement worked as intended. 

3. The effect of executing the commands in the first 6 examples 
can be accomplished by 3 create table commands. Example 9 
shows a DROP TABLE command; use similar DROP commands 
to delete all the tables you created in Exercises 1 and 2. Now, 
write 3 create table commands that have the same effect as 
Examples 1 through 6. After running the DDL statements, open 
the Relationships Tool to verify your commands created the 3 
tables and the 2 relationships. 

4. Example 7 creates an index. Run this command in your 
database and then verify the index has been created. You can 
view index information by clicking the Indexes icon: 

Notice that the (primary) index has a name that was 
generated by Microsoft Access. 

5. Consider an ERD from the previous chapter. Write the DDL 
that could create the required relations. 

Data Definition Language (DDL)  |  195



10. Normalization 
RON MCFADYEN 

The theory of normal forms is concerned with the structure of 
relations in a relational database. There are several normal forms 
of which 1NF, 2NF, 3NF and Boyce-Codd (BCNF) are the most 
important for practical online transaction processing (OLTP) 
database design. Online transaction processing (OLTP) systems are 
used to run the day-to-day events of a business. 

Normalization theory gives us a theoretical basis to judge the 
quality of a database and helps one understand the impact of some 
design decisions. In practice, Entity Relationship Modeling is the 
primary technique used for designing databases and experienced 
practitioners will typically develop BCNF relations as a result. 
Normalization can be applied by the practitioner to understand 
better the semantics behind some relations and possibly make some 
design modifications. 

Boyce-Codd (1NF – 3NF) 

1NF, 2NF, 3NF and BCNF are acronyms for first normal form, second 
normal form, third normal form, and Boyce-Codd normal forms. 
There is a sequence to normal forms: 1NF is considered the weakest, 
2NF is stronger than 1NF, 3NF is stronger than 2NF, and BCNF 
is considered the strongest of these four normal forms. Also, any 
relation that is in BCNF, is in 3NF; any relation in 3NF is in 2NF; and 
any relation in 2NF is in 1NF. This correspondence can be shown as: 

196  |  Normalization



Transactions are units of work designed to meet the goals of 
users. For instance in a banking environment, we would expect 
to find a deposit transaction, a withdrawal transaction, a transfer 
transaction, and a balance lookup transaction. A unit of work is a 
collection of database operations that are executed in their entirety 
or not at all. For example, if you are transferring money from one 
account to another, it’s important for the integrity of accounts that 
the transfer be completely done, and never partly done. If a transfer 
transaction is partly done (say, because of a system failure) then 
accounts would be out of balance. A database environment has 
capabilities to back out partly executed transactions so the system 
can be back where it was prior to a failed transfer transaction. 
A banking system could have thousands of users and we expect 
transactions such as these to be correctly and efficiently executed. 
A normalized database is such that every relation is in at least 1NF, 
and preferably 3NF. Generally speaking, normalized databases lead 
to the most efficient designs for these types of transactions. 

Normalization 

Normalization is a process that replaces a relation with other 
relations of a higher normal form. The process involves 
decomposing a relation into other relations in such a way as to 
preserve the original information and reduce redundancy of data. 
Reducing redundant data increases the number of relations, but 
makes the data easier to maintain. Later, we will provide examples 
of decomposition. 

We say normalization is a process that improves a database 
design. The objective of normalization is sometimes stated: to create 
relations where every dependency is on the key, the whole key, and 

Normalization  |  197



nothing but the key1. A relation that is fully normalized is about a 
single concept such as a student entity type, a course entity type, 
and so on. 

De-normalization is a process that changes relations from higher 
to lower normal forms, and hence generates redundant data in 
the tuples (rows/records) of a relation (table). If deemed necessary, 
this would be done to improve the performance (reduce the cost) 
of retrieving information from the database. The cost of querying 
de-normalized relations is generally less because fewer joins are 
required. 

We consider higher normal forms to be better choices because 
the update semantics for data are simplified. By this, we mean that 
applications required to maintain the database are simpler to code 
and so they are easier to maintain. In the following, we discuss: 

• Functional Dependencies 
• Update Anomalies 
• Partial Dependencies 
• Transitive Dependencies 
• Normal Forms 

10.1 Functional Dependencies 

To understand normalization theory (first, second, third and Boyce-
Codd normal forms), we must understand what is meant by the 
term functional dependency. There is another type of dependency 
called a multi-valued dependency, but that is important to the 
understanding of higher normal forms not covered in this text. A 

1. Kent, William. "A Simple Guide to Five Normal Forms in 
Relational Database Theory", Communications of the 
ACM 26 (2), Feb. 1983, pp. 120–125. 

198  |  Normalization



functional dependency is an association between two attributes. 
We say there is a functional dependency from attribute A to an 
attribute B if and only if for each value of A there can be at most one 
value for B. We can illustrate this by writing 

• A functionally determines B, or 
• B is functionally determined by A, or 

• by a drawing such as: 

When we have a functional dependency from A to B we refer to 
attribute A as the determinant. 

Example 1 

Consider a company collecting information about each employee 
such as the employee’s identification number (ID), their first name, 
last name, salary and gender. As is typical, each employee is given 
a unique ID which serves to identify the employee. Hence for each 
value of ID, there is at most one value for first name, last name, 
salary and gender. Therefore, we have four functional dependencies 
where ID is the determinant; we can show this as a list or 
graphically: 

If you think about this case, there cannot be any other functional 
dependencies (FDs). For example, consider the gender attribute – 
we need to allow for more than one employee for a given gender, 
and so we cannot have a situation where gender functionally 

determines ID. So, gender  ID cannot exist. Now consider the 
first name attribute. Again, we need to allow for more than one 

Normalization  |  199



employee to have the same first name and so first name cannot 
determine anything. Similarly for other attributes. 

Example 2 

Recall the Department and Course tables introduced in Chapter 2 – 
sample data is shown below: 

Department 

deptCode deptName deptLocn deptPhone chairName 

ENGL English 3D05 786-9999 April Jones 

MATH Mathematics 2R33 786-0033 Peter 
Smith 

ACS Applied Computer 
Science 3D07 786-0300 Simon Lee 

PHIL Philosophy 3C11 786-3322 Judy Chan 

BIOL Biology 2L88 786-9843 James 
Dunn 

Figure 2.1 Department table 
 

200  |  Normalization



Course 

deptCode courseNo title description creditHours 

ACS 1453 
Introduction 
to 
Computers 

This course 
will introduce 
students to the 
basic concepts 
of computers: 
types of 
computers, 
hardware, 
software, and 
types of 
application 
systems. 

3 

ACS 1803 
Introduction 
to 
Information 
Systems 

This course 
examines 
applications of 
information 
technology to 
businesses and 
other 
organizations. 

3 

ENGL 2221 The Age of 
Chaucer 

This course 
examines a 
selection of 
medieval 
poetry and 
drama with 
emphasis upon 
Chaucer’s 
Canterbury 
Tales. 

6 

Normalization  |  201



PHIL 2219 Philosophy 
of Art 

Through 
reading key 
theorists in the 
history of 
esthetics, this 
course 
examines 
some of the 
fundamental 
problems in 
the philosophy 
of art, 
including 
those of the 
definition and 
purpose of art, 
the nature of 
beauty, the 
sources of 
genius and 
originality, the 
problem of 
forgery, and 
the possible 
connection 
between art 
and the moral 
good 

3 

BIOL 4451 
Forest 
Ecosystems 
Field Course 

This is an 
intensive 
three-week 
field course 
designed to 
give students a 
comprehensive 
overview of 
forest ecology 
field skills. 

2 

BIOL 4931 Immunology 

Immunology is 
the study of 
the defense 
system which 
the body has 
evolved to 
protect itself 
from external 
threats such as 
viruses and 
internal 
threats such as 
tumor cells. 

3 

202  |  Normalization



Figure 2.2 Course table 
Recall the primary keys (underlined above) of these two tables: 

Table Primary Key 

Department deptCode 

Course deptCode, courseNo 

Consider the Department table where deptCode is the primary key. 
For each value of deptCode, there is at most one value for 
deptName, deptLocn, deptPhone, and chairName. You should agree 
the following functional dependencies exist: 

deptCode deptName 

deptCode deptLocn 

deptCode deptPhone 

deptCode chairName 
Each row of the Course table has one value for title, one value 

for description, and one value for credit hours. The primary key of 
Course is consists of two attributes, deptCode and courseNo. 

The following functional dependencies exist for the Course table: 

deptCode, courseNo  title 

deptCode, courseNo  description 

deptCode, courseNo  credit hours 
In this case, we have a determinant comprising two attributes; the 

determinant is composite. 
We can draw the functional dependencies as: 

Normalization  |  203



Could there be other functional dependencies in this situation? 
These examples demonstrate that there is a functional 

dependency from the primary key to each of the other attributes in 
a table. 

Example 3. 

The following entity relational diagram (ERD) is shown in the Chen 
notation. There is one entity type named Employee that has 4 
attributes. In this design, there are two keys (id and sin) and two 
descriptive attributes (firstName and lastName) 

Each symbol in an ER diagram contains information about a 
model. From the above, we know there are two keys – id and sin. 
An id value, or a sin value, will uniquely identify an employee and so 
we have the six functional dependencies (FDs): 

This example shows that an ER Diagram carries information that 
can be expressed in terms of functional dependencies. 

204  |  Normalization



Exercises 

1. Consider the Product table below where productID is the PK. 
What FDs must exist in this table: 

productID description unit 
price 

quantity on 
hand 

33 16 oz. can tomato soup 1.00 50 

41 454 gram box corn flakes 4.50 39 

45 Package red licorice 1.00 39 

46 Package black licorice 1.00 50 

47 1 litre 1% milk 1.99 25 

2. Consider the ERD where the entity type Employee has one key 
attribute, id, and the entity type Position has one key 
attribute, title. As well the ERD shows a one-to- many 
relationship assigned to which can be expressed as: 

An employee is assigned to at most one position. 
A position can be assigned to many employees. 

List the FDs that must be present. 

3. Consider this ERD that is similar to the above but where 
the assigned to relationship is many-to-many, and 

Normalization  |  205



where assigned to has an attribute startDate. List the FDs that 
are present. 

4. Consider the ERD below where Department has two 
keys deptCode and deptName – each department has a unique 
department code and has a unique department name. Course is 
a weak entity type with a partial key courseNo, and 
where offers is an identifying relationship. 

List the FDs that must exist. 

5. Consider the table with attributes A, B and C. 

206  |  Normalization



A B C 

1 33 100 

2 33 200 

3 22 200 

1 33 101 

2 33 350 

4 67 350 

5 67 101 

Suppose there are many more rows that are not 
shown. 

a) Is there a functional dependency from B to A? 
Explain your answer. 

b) The rows that are shown suggest there could 

be a functional dependency A  B. Compose a 
database query that would list rows, if they exist, that 
are counterexamples to the functional dependency A 

B. Such a query would list rows in the table where 
two or more rows have the same value for A but 
different values for B. 

 

10.1.2 Keys and Non-Keys 

Before going further, we need to be clear regarding the concept 
of key. We define the key of a relation to be any minimal set of 

Normalization  |  207



attributes that uniquely identify tuples in the relation. We say 
minimal in order to eliminate trivial cases. Consider: If attribute 
k is a key and uniquely identifies a tuple then any combination 
of attributes that include k must also uniquely identify tuples. So, 
we restrict keys to be minimal sets of attributes that retain the 
property of unique identification. Further, we define candidate 
keys to be the collection of keys for a relation; a database designer 
must choose one of the candidate keys to be the primary key. 

Additionally, we define key attributes to be those attributes that 
are part of a key, and non-key attributes are those attributes that 
are not part of any key. 

10.1.3 Anomalies 

An anomaly is a variation that differs in some way from what is 
considered normal. With regards to maintaining a database, we 
consider the actions that must occur when data is updated, 
inserted, or deleted. In database applications where these update, 
insert, and/or delete operations are common (e.g. OLTP databases), 
it is desirable for these operations to be as simple and efficient as 
possible. 

When relations are not fully normalized, they exhibit update 
anomalies because basic operations are not as simple as possible. 
When relations are not fully normalized, some aspect of the relation 
will be awkward to maintain. 

Consider the relation structure and sample data: 

208  |  Normalization



deptNum courseNum studNum grade studName 

92 101 3344 A Joe 

92 115 7654 A Brenda 

81 101 7654 C Brenda 

92 226 3344 B Joe 

This relation is used for keeping track of students enrollments, the 
grade assigned, and (oddly) the student’s name. 

What must happen if a student’s name were to change? We should 
want our databases to have correct information, and so the name 
may need to be changed in several records, not just one. This is an 
example of an update anomaly – the simple change of a student’s 
name affects, not just one record, but potentially several in the 
database. The update operation is more complex than necessary, 
and this means it is more expensive to do, resulting in slower 
performance. When operations become more complex than 
necessary, there is also a chance the operation is programmed 
incorrectly resulting in corrupted data – another unfortunate 
consequence. 

Consider the Course and Department tables again, but now 
consider that they are combined into a single table. Obviously, this 
is a table with a considerable redundancy – for each course in the 
same department, the department location, phone, and chair must 
be repeated. 

 

Department_Course 

dept 
Code 

dept 
Name 

dept 
Location 

dept 
Phone 

chair 
Name 

course 
No title description credit 

Hours 

The primary key of such a table must be {deptCode, courseNo}. 

Normalization  |  209



Consider for the following, however unlikely the situation seems, 
that the Deparment_Course table is the only table where 
department information is kept. Note that our point here is only 
to show, for a simple example, how redundancy leads to difficult 
semantics for database operations. 

Insert anomaly 

Suppose the University added a new department but there are no 
courses for that department yet. How can a row be added to the 
above table? Recall that no part of a primary key can be null, and so 
we can’t insert a row for a new department because we do not have 
a value for courseNo. This is an example of an insertion anomaly. 

Delete anomaly 

Suppose some department is undergoing a major reorganization. All 
courses are to be removed and later on some new courses will be 
added. If we delete all courses then we lose all the information in 
the database for that department. 

 
The previous discussion concerning anomalies highlights some of 

the data management issues that arise when a relation is not fully 
normalized. Another way of describing the general problem here, 
as far as updating a database is concerned, is that redundant data 
makes it more complicated for us to keep the data consistent. 

210  |  Normalization



10.1.4 Partial Functional Dependencies 

Consider a relation with department number, department chair 
name, course number and course title attributes. The combination 
{department number, course number} must be a key. The directed 
lines depict the FDs that are present. 

Note the functional dependency of chair name on department 
number. If two or more rows in the relation have the same value 
for department number, they must have the same value for chair 
name. We say this redundancy is due to the FD of chair name on 
department number. Because chair name is a non-key attribute and 
is dependent on department number, a subset of a key, we call this 
dependency a partial dependency. 

In general, if we have a composite key {A, B} and the dependencies 
below 

we say that C is partially dependent on {A, B}. 

Normalization  |  211



Exercises 

1. Suppose each delivery of a course is called a section. In any 
one term, a course may have multiple sections and each 
section is assigned an instructor. Each course has a course 
title. Consider a Section relation where the PK is {dept number, 
course number, section number}. What FDs exist? Is there a 
partial dependency? 

deptNo courseNo sectionNo instructor title 

91 1906 001 J. Smith Java I 

91 1906 002 D. Grand Java I 

91 1910 001 J. Smith Java II 

91 1910 002 J. Daniels Java II 

53 1906 001 S. Farrell History of the World 

… … … … … 

2. Consider a relation with attributes X, Y, Z, W where the 

only CK is {X,Y}, and where the FDs are {X,Y}  Z, {X,Y} 

  W, and Y  W. Is there a partial dependency? 

10.1.6 Transitive Functional Dependencies 

Consider a relation that describes a couple of concepts, say 
instructor and department, and where the building shown is the 
building where the department is located, and the attribute 
instructor number is the only key: 

212  |  Normalization



instructor 
number 

instructor 
name office department 

code building 

33 Joe 3D15 B&A Buhler 

44 Joe 3D16 ACS Duckworth 

45 April 3D17 ACS Duckworth 

50 Susan 3D17 ACS Duckworth 

21 Peter 3D18 B&A Buhler 

22 Peter 3D18 MATH Duckworth 

As instructor number is the only key, we have the following FDs: 

Suppose we also have the FD: department code determines 
building. Now our FD diagram becomes: 

and we say the FD from instructor number to building 
is transitive via department code. 

In general, if we have a relation with key A and functional 

Normalization  |  213



dependencies: A  B and B  C, then we say attribute 
A transitively determines attribute C. 

Figure 10.9 Non-key attributes and a transitive dependency 
Note: B and C above are non-key attributes. If we also had the 

functional dependency B  A (and so A and B are candidate keys) 
then A does not transitively determine C. 

Exercises 

1. Consider a relation that describes an employee including the 
province where the employee was born. Suppose the only key 
is employeeId and we have the attributes: name, birthDate, 
birthProvince, currentPopulation. 

214  |  Normalization



Employee 

employeeId name birthDate birthProvince currentPopulation 

123 Joe Jan 1, 
1990 MB 1,200,000 

222 Jennifer Jan 5, 
1988 SK 1,450,000 

345 Jimmy Feb 5, 
1987 MB 1,200,000 

… … … … … 

What FDs would exist? Is there a transitive dependency? 

 

2. Consider a relation with attributes X, Y, Z, W where the only 

CK is X, and the FDs are X  Y, X  Z, X  W and Y  Z. 
Is there a transitive dependency? 

Normal Forms 

The normal forms usually of interest to the database designer are 
1NF, 2NF, 3NF and BCNF. There are more (higher) normal forms 
that we leave to follow-up courses. We discuss 1NF and BCNF; 2NF 
and 3NF are mentioned in our summary. 1NF is so important, it 
is actually a property of a relation; that is, to say something is a 
relation means that it is at least in 1NF. BCNF has a simple definition 
(compared to 2NF and 3NF) and is the usual objective of the 
designer. 

If you understand 1NF and BCNF then you have good insight into 
the nature of relations that are easy to understand and maintain. 

Normalization  |  215



If you understand why a relation is not BCNF then you will know 
the source of its redundant data which is necessary in order to 
know how to properly maintain the data contained in the relation. In 
most practical cases when a relation is not BCNF, the reason will be 
related to partial or transitive dependencies. 2NF relations do not 
have partial dependencies, and 3NF relations do not have partial nor 
transitive dependencies. 

10.2 FIRST NORMAL FORM (1NF) 

We say a relation is in 1NF if all values stored in the relation 
are single-valuedand atomic. With this rule, we are simplifying the 
structure of a relation and the kinds of values that are stored in the 
relation. 

Example 1 

Consider the following EmployeeDegrees relation. 

◦ empNo is the PK 
◦ Each employee has one first name and one salary 
◦ Each employee has zero or more university degrees … 

stored as a single attribute 

216  |  Normalization



EmployeeDegrees 

empNo first name salary degrees 

111 Joe 29,000 BSc, MSc 

200 April 41,000 BA, MA 

205 Peter 33,000 BEng 

210 Joe 20,000 

This relation is not in 1NF because the degrees attribute can have 
multiple values. Below are two relations formed by splitting 
EmployeeDegrees into two relations – one relation has attributes 
empNo, first name, and salary and the other has empNo and degree. 
We say we have decomposed EmployeeDegrees into two relations 
and we have populated each with data from EmployeeDegrees. Each 
of these is in 1NF, and if we join them on empNo we can get back the 
information shown in the relation above. 

Example 2 

Consider the Student relation below. The name attribute comprises 
both first and last names and so its not atomic. Student is not 1NF. 

Normalization  |  217



Student – not in 1NF 

studentNo name gender 

444 Jim Smith m 

254 Donna Jones f 

333 Peter Thomas m 

765 Jim Smith m 

If we modify Student so there are two attributes (say, first and last) 
then Student would be 1NF: 

Student – in 1NF 

studentNo first last gender 

444 Jim Smith m 

254 Donna Jones f 

333 Peter Thomas m 

765 Jim Smith m 

If we can say that a relation (or table) is in 1NF then we are saying 
that every attribute is atomic and every value is single-valued. This 
simplifies the form of a relation. 

It is very common for names to be separated out into two or 
more attributes. However, attributes such as birth dates, hire dates, 
etc. are usually left as a single attribute. Dates could be separated 
out into day, month, and year attributes, but that is usually beyond 
the needs of the intended system. Some would take the view that 
separating a date into 3 separate attributes is carrying the concept 
of normalization a little too far. Database systems do have 

218  |  Normalization



convenient functions that can be used to obtain a day, month, or 
year values from a date. 

10.2 Exercises 

1. Consider the relation below that holds information about 
courses and sections. Suppose departments have courses and 
offer these courses during the terms of an academic year. A 
section has a section number, is offered in a specific term (e.g. 
Fall 2016, Winter 2017) and a slot (e.g. 1, 2, 3, …15) within that 
term. Each time a course is delivered, there is a section for that 
purpose. Each section of a course has a different number. As 
you can see, a course may be delivered many times in one 
term. 

CourseDelivery 

deptNo courseNo delivery 

ACS 1903 
001, Fall 2016, 05; 

002, Fall 2016, 06; 
003, Winter 2017, 06 

ACS 1904 001, Fall 2016, 12; 
002, Winter 2017, 12 

Math 2201 001, Fall 2016, 11; 
050, Fall 2016, 15 

Math 2202 050, Fall 2016, 15 

Modify CourseDelivery to be in 1NF. Show the contents of the 
rows for the above data. 

2. Chapter 8 covered mapping an ERD to a relational database. 
Consider the examples from Chapter 8; are the relations in 

Normalization  |  219



1NF? 

10.3 Boyce-Codd Normal Form (BCNF) 

Initial research into normal forms led to 1NF, 2NF, and 3NF, but 
later2 it was realized that these were not strong enough. This 
realization led to BCNF which is defined very simply: 

A relation R is in BCNF if R is in 1NF and every determinant 
of a non-trivial functional dependency in R is a candidate 
key. 

BCNF is the usual objective of the database designer, and is based 
on the notions of candidate key (CK) and functional dependency 
(FD). When we investigate a relation to determine whether or not it 
is in BCNF, we must know what attributes or attribute combinations 
are CKs for the relation, and we must know the FDs that exist in the 
relation. Our knowledge of the semantics of a relation guides us in 
determining CKs and FDs. 

Recall that a CK is an attribute, or attribute combination, that 
uniquely identifies a row. Also, recall a CK is minimal – no attribute 
can be removed without losing the property of being a key. 

Recall that a FD X  Y in a relation R means that for each row in 
the relation R that has the same value for X the value of Y must also 
be the same. 

Recall that when we consider a FD X  Y we refer to the left 
hand side, attribute X, as the determinant. We are concerned with 
minimal FDs – all attributes comprising the determinant are 

required for the FD property to hold. If X  Y is a FD then the 

2. Codd, E.F. (1974) ―Recent Investigations in Relational 
Database Systems, Proceedings of the IFIP Congress, pp. 
1017–1021. 

220  |  Normalization



determinant augmented with any other attribute is also a FD, but it 
would not be a minimal FD. 

We consider a number of examples. The keep the examples simple 
and to the point, each relation involves very few attributes. This 
is of course unrealistic – in practice relations usually have many 
attributes. However, the examples illustrate one point each, and 
more attributes in the relations may cloud the issues. Each example 
begins with a relation that is in 1NF. 

In general, when we determine the relation under consideration is 
not in BCNF, we obtain BCNF relations by decomposing the relation 
into two or more relations that are in BCNF. In this process, we 
say we take a projection of the original relation on a subset of its 
attributes and at the same time we eliminate any duplicate rows. An 
important property of the decomposition is that it must be lossless 
– the new relations will have attributes in common that can be 
used to join the new relations whereby we can realize the original 
relation. All rows of the original relation are obtained in the join, and 
no new or spurious rows are generated – we get back the original 
relation exactly. 

In Example 1, we have a ‘good’ relation, one that is in BCNF. Hence, 
no decomposition is required. We discuss the CDs and FDs for the 
relation thereby knowing it is in BCNF. 

Example 2 presents a relation that is not in BCNF. There is a type 
of redundancy present in its data. We illustrate how to decompose 
the relation into two relations that are each in BCNF. This example 
illustrates a type of dependency known as a partial functional 
dependency. 

Example 3 presents another relation that is not in BCNF. There 
is a type of redundancy present in its data. We illustrate how to 
decompose the relation into two relations that are each in BCNF. 
This example illustrates a type of dependency known as a transitive 
functional dependency. 

Our last example is a case where FDs involve overlapping 
candidate keys, and where FDs exist amongst attributes that make 
up CKs. There is a type of redundancy present which is not related 

Normalization  |  221



to 2NF and 3NF. BCNF gives us a theoretical basis for recognizing 
the source of the redundant data. 

Example 1 

Consider the Employee relation below that depicts sample data for 
5 employees. The semantics are quite simple: for each employee 
identified by a unique employee number, we store the employee’s 
first name and last name. 

Employee 

id first last 

1 Joe Jones 

2 Joe Smith 

3 Susan Smith 

4 Abigail McDonald 

5 Abigail McDonald 

Candidate Keys 

The hypothetical company that uses this relation identifies 
employees by an identification number that is assigned by the 
Human Resources Department and they ensure each employee has 
a different id from every other employee. Clearly id is a candidate 
key. When an employee is hired they have a first and last name, and 
the company has no control over these names. As the sample data 
shows, more than one employee can have the same first name (id 1 

222  |  Normalization



and 2), can have the same last name (id 2 and 3), and can even have 
the same first and last names (id 4 and 5). 

So, id is the only candidate key for this relation. 

Functional Dependencies 

Since each row/employee has a unique identifier, it is easy to see 
there are two FDs for this relation: 

id  first 

id last 

There are no other FDs. For example, we cannot have first 
last. The sample data shows there can be many last names 
associated with any one first name. 

These two FDs are minimal as the determinant, id, cannot be 
reduced at all. 

BCNF? 

In this example, we have one candidate key, id, and this attribute 
is the determinant in all FDs. Therefore, Employee relation is in 
BCNF; it is a ‘good’ relation. 

This relation has a ‘nice’ simple structure; there is one candidate 
key which is the determinant for every FD. 

Example 2 

Consider the following relation named Enrollment: 

Normalization  |  223



Enrollment 

stuNum courseId birthdate 

111 2914 Jan 1, 1995 

113 2914 Jan 1, 1998 

113 3902 Jan 1, 1998 

118 2222 Jan 1, 1990 

118 3902 Jan 1, 1990 

202 1805 Jan 1, 2000 

The semantics of this relation are: 

• Each row represents an enrollment of a student in a course. 
• A student is identified by their student number. 
• A course is identified by a course identifier. 
• A student can only enroll in a course once. Hence the 

combinations {stuNum,courseId} are unique. 
• The birthdate column holds the date of birth for the student of 

that row. When the same student number appears in more 
than one row then the birthdate appears redundantly. 

• A course can have many students registered in it 

Candidate Keys 

It should be clear that several rows may exist for any given student 
number, and several rows may exist for any given course number. 
Also, since we cannot control when someone is born, there can be 
many rows for a value of birthdate. All this just means that no single 
attribute uniquely identifies a row and so no single attribute can 

224  |  Normalization



be a CK. Any CKs for this relation must be composite – comprising 
more than one attribute. It should be fairly clear, given the 
semantics of the relation, that the only attribute combination that is 
a CK is {stuNum,courseId}. For any given value of {stuNum, courseId} 
there can be at most one row. 

Functional Dependencies 

This relation is quite simple in that there is just one FD: stuNum 
 birthdate. If a specific student number appears in more than one 
row, the value stored for birthdate must be the same in all such 
rows. 

BCNF? 

Enrollment has one CK: {stuNum, courseId}, and has one FD 

(stuNum birthdate) where the determinant is not a candidate 
key. Therefore, Enrollment is not in BCNF. 

In this relation, we have an attribute that does not describe the 
whole key – it describes a part of the key. In normalization theory, 

the FD stuNum  birthdate is called a partial functional 
dependency as its determinant is a subset of a candidate key. 

When you think of the Enrollment relation now, you should 
consider that it is about two very different things: 

1. Enrollment presents enrollment information. 
2. Enrollment presents information about students (their 

birthdates). 

Normalization  |  225



Decomposition 

We now consider how Enrollment can be replaced by two relations 
where the new relations are each in BCNF. Above, we mentioned 
that Enrollment is about two very different things – what we need 
to do is arrange for two relations, one for each of these concerns. 

Consider the following two relations as a decomposition of the 
above where we have placed information about enrollments in one 
relation and information about students in another relation. Note 
that these two relations have the stuNum attribute in common. 

Enrollments 

stuNum courseId 

111 2914 

113 2914 

113 3902 

118 2222 

118 3902 

202 1805 

226  |  Normalization



Students 

stuNum birthdate 

111 Jan 1, 1995 

113 Jan 1, 1998 

118 Jan 1, 1990 

202 Jan 1, 2000 

Enrollments and Students can be joined on stuNum to reproduce 
the exact information in Enrollment. Because we have not lost any 
information, and noting that the FD has been preserved, these two 
relations are equivalent to the one we started with. 

• Enrollments has one candidate key: {stuNum,courseId}, and no 
FDs. 
Therefore, Enrollments is in BCNF. 

Students has one CK: stuNum, and has one FD: stuNum 
birthdate. 
Therefore, Students is in BCNF. 

Example 3 

Consider the following relation named Course. 

Normalization  |  227



Course 

courseId teacherId lastName 

2914 11 Smith 

3902 22 Jones 

3913 11 Smith 

4902 33 Jones 

4906 11 Smith 

4994 22 Jones 

The purpose of this relation is to record who is teaching courses. 
Note that a teacher’s id and last name may appear in several rows – 
this information is repeated for each course the teacher is teaching. 
For example, teacher 11 (Smith) is teaching 3 courses (2914, 3913, 
4906) and so we see the same id and last name in three rows. 

The semantics of this relation are: 

◦ Each course is identified by a course identifier. 
◦ For each course there is one row. 
◦ Each teacher is identified by a teacher identifier. 
◦ Each course has one teacher, and so for each course one 

teacher Id is recorded. 
◦ A teacher may teach several courses. 
◦ A teacher’s last name must be the same in every row 

where the teacher’s Id appears. This point leads to 
redundant data in the relation. 

228  |  Normalization



Candidate Keys 

The semantics of the relation are that there is one row per course, 
and so a course id uniquely identifies a row; so, courseId is a 
candidate key. No other attribute or combination can be a candidate 
key for this relation. 

Functional Dependencies 

It is stated there is one teacher per course and so for each courseId 

there is at most one teacherId, and so we have courseId 

teacherId. The opposite, teacherId  courseId, does not hold for 
this relation since a teacher can teach more than one course. 

Another FD that is present is teacherId  lastName. This is 
because for each teacher there is a single last name. Note the 

opposite, lastName  teacherId does not hold in this relation. The 
sample data shows multiple teachers who have the same last name. 

Note that since courseId  teacherId and teacherId 

lastName, it must be true we have the FD courseId  lastName. 
For each course, we have one teacher and so one last name. For 
any value of course id, there will only be one value for teacher last 

name. In relational database theory, the FD courseId  lastName is 
called a transitive functional dependency – lastName is dependent 
on courseId but this dependency is via teacherId. 

BCNF? 

Hopefully, you agree the only FDs are these: 

• courseId  teacherId 

Normalization  |  229



• teacherId  lastName 

• courseId  lastName 

The only candidate key is courseId, and there is a FD, teacherId 
lastName, where the determinant is not a candidate key. Therefore, 
Course is not BCNF. 

When you think of the Course relation now, you should see that it 
is about two very different things: 

1. Course presents teacher information (teacherId) for courses. 
2. Course presents information about teachers (their last names). 

Decomposition 

Course can be replaced by two relations where the new relations 
are each in BCNF. Above, we mentioned that Course is about two 
very different things – what we need to do is arrange for two 
relations, one for each of these concerns. 

Consider the following two relations as a decomposition of the 
above where we have placed information about courses in one table 
and information about teachers in another table. These relations 
have a common attribute, teacherId. 

230  |  Normalization



Courses 

courseId teacherId 

2914 11 

3902 22 

3913 11 

4902 33 

4906 11 

4994 22 

Teachers 

teacherId lastName 

11 Smith 

22 Jones 

33 Jones 

Courses and Teachers can be joined on teacherId to reproduce 
exactly the information in Course. Because we have not lost any 
information, and noting that the FD has been preserved as well, 
these two relations are equivalent to the one we started with. 

• Courses has one candidate key: courseId. The only FD is 
courseId?teacherId. Therefore, Courses is in BCNF. 

• Teachers has one candidate key: teacherId. There is one FD: 
teacherId?lastName. Therefore, Teachers is in BCNF. 

Normalization  |  231



Example 4 

This example uses a relation that contains data obtained from a 2011 
Statistics Canada survey. Each row gives us information about the 
percentage of people in a Canadian province who speak a language 
considered their mother tongue3. The ellipsis “…”indicate there are 
more rows. 

                               Province Language Statistics 

provCode provName language percentMotherTongue 

MB Manitoba English 72.9 

MB Manitoba French 3.5 

MB Manitoba non-official 21.5 

SK Saskatchewan English 84.5 

SK Saskatchewan French 1.6 

SK Saskatchewan non-official 12.7 

NU Nunavut English 28.1 

… … … … 

3. Mother tongue refers to the first language learned at 
home in childhood and still understood by the person at 
the time the data was collected. The person has two 
mother tongues only if the two languages were used 
equally often and are still understood by the person. 

232  |  Normalization



The ProvinceLanguageStatistics relation has redundant data. In the 
rows listed above, we see that each province name and each 
province code appear multiple times. 

Candidate Keys 

There can be more than one row for any province. For the 
combination of province and language, however, there can be only 
one row and so there are two composite candidate keys: 

{provCode, language} 
{provName, language} 

Functional Dependencies 

Since province codes and province names are unique, we have the 
FDs: 

provCode  provName 

provName  provCode 
For each combination of province and language, there is one value 

for percent mother tongue. We have FDs: 

provCode,language  percentMotherTongue 

provName,language  percentMotherTongue 

BCNF? 

The first two FDs listed above have determinants that are subsets 
of candidate keys. Therefore, ProvinceLanguageStatistics is not 
BCNF. 

The ProvinceLanguageStatistics relation has information about 
two different things: 

Normalization  |  233



• It has information about provinces (names/codes). 
• It has information about mother tongues in the provinces. 

Decomposition 

To obtain BCNF relations, we must decompose 
ProvinceLanguageStatistics into two relations. For example, 
consider Province and ProvinceLanguages below: 

Province 

provCode provName 

MB Manitoba 

SK Saskatchewan 

NU Nunavut 

… … 

234  |  Normalization



ProvinceLanguages 

provCode language percentMotherTongue 

MB English 72.9 

MB French 3.5 

MB non-official 21.5 

SK English 84.5 

SK French 1.6 

SK non-official 12.7 

NU English 28.1 

NU French 1.4 

NU non-official 69.6 

… … … 

These relations can be joined on provCode to produce exactly the 
information shown in ProvinceLanguageStatistics. 

• Province has two composite keys (CKs): provCode and 
provName. 

• There are two functional dependencies (FDs): provCode 

provName and provName provCode. 
Therefore, Province is in BCNF. 

• ProvinceLanguages has one CK: {provCode,language}, and one 

FD: {provCode,language}   percentMotherTongue. 
Therefore, ProvinceLanguages is in BCNF. 

Normalization  |  235



10.4 Summary 

We have discussed functional dependencies, candidate keys, 1NF 
and BCNF. BCNF is the usual objective of the database designer. 
When a relation is not BCNF then one or more of the following will 
be the source of redundancy in a relation: 

◦ Partial dependencies 
◦ Transitive dependencies 
◦ Functional dependencies amongst key attributes. 

2NF:  2NF involves the concepts of candidate key and non-key 
attributes. A relation is considered to be in 2NF if it is in 1NF, and 
every non-key attribute is fully dependent on each candidate key. 

In Example 2, we mentioned that stuNum  birthdate was 
considered a partial functional dependency as stuNum is a subset 
of a candidate key. A 2NF relation does not contain partial 
dependencies. 

3NF: 3NF involves the concepts of candidate key and non-key 
attributes. We say a relation is in 3NF if the relation is in 1NF and all 
determinants of non-key attributes are candidate keys. 

In Example 3, we mentioned that courseId  lastName was 
considered a transitive dependency. LastName is dependent on 
teacherId which is not a candidate key. A 3NF relation does not have 
partial dependencies nor transitive dependencies. 

BCNF:  The definition of BCNF concerns FDs and CKs – there is 
no mention of non-key attributes. Hence, BCNF is a stronger form 
than 2NF or 3NF (a BCNF relation will be in 2NF and 3NF). 

A database designer may decide to not normalize completely to 
BCNF. This is sometimes done to ensure that certain data can be 
retrieved without having to join relations in a query – when a join 
is avoided the data is typically retrieved more quickly from the 
database. This is often done in a data warehouse environment 
(outside the scope of these notes). 

236  |  Normalization



10.4 Exercises 

In each of these exercises, consider the relation, CKs, and FDs. 
Determine if the relation is in BCNF. If not in BCNF, give a non-
loss decomposition into BCNF relations. The last 5 questions are 
abstract and give no context for the relation nor attributes. 

1. Identify the relationships of Player and the Player fields. Player 
has information about players for some sports league.While 
using the entities and fields found in Player, create a DBDL 
example of tables, fields, and key fields that are in first normal 
form, second normal form and third normal form. Convert this 
table to an equivalent collection of tables, fields and keys that 
are in first normal form. Represent your exercise answers in 
DBDL design from the database normalization phases 
explained in class.Player has attributes id, first, last, gender. Id 
is the only CK and the FDs are: 

id  first 

id  last 

id  gender 

Player – sample data 

id first last gender 

1 Jim Jones Male 

2 Betty Smith Female 

3 Jim Smith Male 

4 Lee Mann Male 

5 Samantha McDonald Female 

Normalization  |  237



2. Identify the relationships of Employee and fields for Employee. 
Employee has information about employees in some company. 
While using the entities and fields found in Player, create a 
DBDL example of tables, fields, and key fields that are in first 
normal form and second normal form and third normal form. 
Convert this table to an equivalent collection of tables, fields 
and keys that are in first normal form and second normal form 
and third normal form. Represent your exercise answers in 
DBDL design from the database normalization phases 
explained in class. Employee has attributes id, first, last, sin 
(social insurance number) where id and sin are the only CKs, 
and the FDs are: 

id first 

id  last 

sin  first 

sin  last 

id  sin 

sin  id 

Employee – sample data 

id first last sin 

1 Jim Jones 111222333 

2 Betty Smith 333333333 

3 Jim Smith 456789012 

4 Lee Mann 123456789 

5 Samantha McDonald 987654321 

 

238  |  Normalization



3. Identify the relationships of Player and Player fields including 
PKs, CKs, and FDs. While using the entities and fields found in 
Player, create a DBDL example of tables, fields, and key fields 
that are in third normal form. Convert this table to an 
equivalent collection of tables, fields and keys that are in third 
normal form. Represent your exercise answers in DBDL 
design from the database normalization phases explained in 
class.Player contains information about players and their 
teams. Player has attributes playerId, first, last, gender, teamId, 
teamName, teamCity where playerId is the only CK and the 
FDs are: 

playerId  first 

playerId  last 

playerId gender 

playerId  teamId 

playerId  teamName 

playerId  teamCity 

teamId  teamName 

teamId  teamCity 

Normalization  |  239



Player – sample data 

playerId first last gender teamId teamName teamCity 

1 Jim Jones M 1 Flyers Winnipeg 

2 Betty Smith F 5 OilKings Calgary 

3 Jim Smith M 10 Oilers Edmonton 

4 Lee Mann M 1 Flyers Winnipeg 

5 Samantha McDonald F 5 OilKings Calgary 

6 Jimmy Jasper M 99 OilKings Winnipeg 

4. Consider a relation Building which has information about 
buildings and floors. Identify the relationships of Building and 
Building fields including PKs, CKs, and FDs. While using the 
information in Building, create a DBDL example of tables and 
fields that are in third normal form. Convert this table to an 
equivalent collection of tables, fields, and key fields that are in 
third normal form. Represent your exercise answers in DBDL 
design from the database normalization phases explained in 
class.Building has attributes buildingCode, floor, numRooms, 
campus where {buildingCode,floor} is the only CK and the FDs 
are: 

{buildingCode,floor}  numRooms 

buildingCode  campus 

240  |  Normalization



Building – sample data 

buildingCode floor numRooms campus 

D3 3 15 Downtown – 3 

C 2 5 Central 

RP 1 20 Selkirk 

D2 2 5 Downtown – 2 

D1 1 20 Downtown – 1 

5. Consider a relation Course which contains information about 
courses. While using the entities and fields found in Course, 
create a DBDL example of tables, fields, and key fields that are 
in third normal form. Convert this table to an equivalent 
collection of tables, fields and keys that are in third normal 
form. Represent your exercise answers in DBDL design from 
the database normalization phases explained in class.Course 
has attributes deptCode, deptName, courseNum, creditHours 
where {deptCode,courseNum} and {deptName,courseNum} are 
the only CKs. The FDs are: 

{deptCode,courseNum}   creditHours 

{deptName,courseNum}  creditHours 

deptCode  deptName 

deptName   deptCode 

Normalization  |  241



Course – sample data 

deptCode deptName courseNum creditHours 

Math Mathematics 2101 3 

Stat Statistics 4002 3 

Phy Physics 3101 1 

Stat Statistics 4001 6 

Math Mathematics 2111 6 

6. Consider the relation Student Performance below which 
describes student performance in courses. While using the 
entities and fields found in Student Performance, create a 
DBDL example of tables, fields, and key fields that are in third 
normal form. Convert this table to an equivalent collection of 
tables, fields and keys that are in third normal form. Represent 
your exercise answers in DBDL design from the database 
normalization phases explained in class.The value stored in the 
gradePoint column is the grade point that corresponds to the 
grade received in a course. Assume that students are identified 
by their student number, and that courses are identified by 
their course id. Assume each student can take a course only 
once and so each row is uniquely identified by {stuNum, 
courseId}. Each student’s overall gpa is stored – gpa is the 
average of gradePoint for all courses taken by a student. 

242  |  Normalization



Student Performance – sample data 

stuNum courseId grade gradePoint gpa 

111 3030 C 2.0 2.0 

113 3030 C 2.0 2.5 

113 4040 B 3.0 2.5 

118 2222 C 2.0 2.25 

118 4040 C+ 2.5 2.25 

202 1188 B 3.0 3.0 

7. Consider Example 4. Is there another decomposition of 
ProvinceLanguageStatistics that leads to BCNF relations? 

8. Consider a relation R with attributes X, Y, W, Z where X is the 
only CK, and where there are FDs: 

X  Y 

X  W 

X  Z 

9. Consider a relation R with attributes X, Y, W, V where X and V 
are the only CKs, and where there are FDs: 

X  Y 

X  W 

V  Y 

V  W 

X  V 

V  X 

Normalization  |  243



10. Consider a relation R with attributes X, Y, W, V, Z where X is 
the only CK, and where there are FDs: 

X  Y 

X  W 

W  Z 

W  V 

11. Consider a relation R with attributes A, B, C, D, E, F where {A,B} 
is the only CK, and where there are FDs: 

{A,B}  C 

{A,B}  D 

A  E 

A  F 

12. Consider a relation R with attributes A, B, C, D, E where {A,C} 
and {B,C} are the only CKs, and where there are FDs: 

{A,C}  D 

{B,C}  D 

{A,C}  E 

{B,C}  E 

A  B 

B  A 

244  |  Normalization



Appendix A: Forms Involving 
Multiple Tables 
RON MCFADYEN 

In Chapter 3, we created simple forms for single tables. A very useful 
form is one where the user can interact with data that comes from 
more than one table. We will consider how this can be done in cases 
where two tables are related by a one-to-many relationship. 

We will illustrate creating such a form using the Microsoft Access 
Form Wizard. As you will see, the Form Wizard will create a form 
and a subform. These two forms will have a connection established 
based on related fields: a primary key and a foreign key. 

Consider using the Company database: 

1. If the one-to-many relationship between Department 
table and Employee table does not exist, then create this 
now. Note that this is Exercise 1 in Chapter 5. After doing 
this you should have the relationship as shown: 

2. Use the Create tab and create a form using the Form 
Wizard. Select all fields from the Department table: 

Appendix A: Forms Involving Multiple
Tables  |  245



3. Do not click Next or Finish, instead choose the Employee 
table and select all of its fields and now the Selected Fields 
component shows fields from both tables: 

4. Now, click Next and Microsoft Access asks you how the 
data should be viewed: 

246  |  Appendix A: Forms Involving Multiple Tables



5. We want the data displayed “by Department” and we want 
MS Access to use “Form with subform(s)” so you can select 
Next and Microsoft Access will let you choose a layout. 
Choose Datasheet Layout. Click Next and Access will ask 
you to name the form – name the form 
EmployeesByDepartment and name the subform 
EmployeesSubform: 

6. Click Finish. Microsoft Access will display the finished 
form called EmployeesByDepartment – see below. 
Experiment with the form: notice the two sets of 
navigation buttons – one that controls the department 
being viewed, and the other that controls the view of the 

Appendix A: Forms Involving Multiple Tables  |  247



department’s employees. 

Exercises 

1. Consider using the University database. Create a form to allow 
a user to view courses by department. 

2. Consider using the Library database. There are two one-to-
many relationships. Create a form to list the loan records for a 
book. Create another form to list the loan records for a 
member. 

3. Consider using the Orders database. This database has several 
one-to-many relationships. Create appropriate forms to list 

1. A customer and the customer’s orders; 
2. An order and its detail lines; 
3. A product and the order detail lines where the product is 

referenced; 
4. A category and the products belonging to the category. 

248  |  Appendix A: Forms Involving Multiple Tables



Appendix B: Supertypes and 
Subtypes 
RON MCFADYEN 

We have covered the basics of entity-relationship modeling and 
now we will extend our design capabilities to include supertypes and 
subtypes. It is often the case that an entity type has subgroupings 
that are useful to include in a data model. For instance, in a 
University environment, persons could be grouped into employees 
and students. Courses could be grouped into graduate courses and 
undergraduate courses. 

Previously, we considered a Library database where one entity 
type was book; instances of book are loaned out to library members. 
A library could have many other kinds of things that it loans out 
such as videos and magazines. A more general thing the library loans 
out can be referred to as an item. Videos, magazines, and books can 
be considered subtypes of item. 

We will consider only supertype and subtype hierarchies. 
Hierarchies arise when an entity type appears as a subtype of only 
one supertype. So we are disallowing cases where an entity type has 
two or more supertypes. 

B.1 Drawing Supertypes and Subtypes on the 
Entity Relationship Diagram 

There are different ways that supertypes and subtypes can be 
shown on an Entity Relationship diagram (ERD or ER diagram). We 
will continue with the Peter Chen notation in this appendix. 
Between a supertype and its subtypes, we show a connection 
symbol (a circle) where one line is drawn from the supertype to the 

Appendix B: Supertypes and
Subtypes  |  249



connection symbol and then lines are drawn from the connection 
symbol to each subtype. 

A collection of related subtypes can be regarded as overlapping 
or disjoint. Subtypes are considered as disjoint if it is impossible for 
an instance of a supertype to be regarded as being an instance of 
more than one subtype. For example, a library item will be one of 
the subtypes (and only one). Subtypes are considered as overlapping 
if it is possible for an instance of a supertype to be regarded as being 
an instance of more than one subtype. An example of overlapping 
can exist with people in a university environment: it is possible 
that some person could be both an employee and a student at the 
same time. In our Peter Chen notation, we will use a “d” in the 
connection symbol to represent disjoint subtyping, and we will use 
“o” to represent overlapping. 

In our notation, we also include an arc on each of the lines joining 
the connection symbol to the subtypes that implies “containment”. 
To illustrate the drawing technique, consider a library where items 
are loaned to members and where an item can be either a video, a 
magazine, or a book. Suppose also that an item belongs to exactly 
one (i.e. disjoint subtypes) of these subtypes. We can show this as: 

We extend our notation once more. To indicate that a 
supertype must exist as one of its subtypes, we show total 
participation in subtyping by using a double line. For example, if we 
want to show that each item must be one of the subtypes: 

250  |  Appendix B: Supertypes and Subtypes



The double line from Item to the connection symbol shows total 
participation of Item in the subtyping: whenever there is an instance 
of an Item, then that item must also be one of the subtypes shown 
– a video, a magazine, or a book. If we did not specify total 
participation then we would be allowing an item to exist where 
that item is not a video, nor is it a magazine, nor is it a book. 
So, participation of a supertype in the subtyping is either total or 
optional. The converse is always true: if we have an instance of a 
subtype then that instance is an instance of the supertype. In the 
library model then, if we have an instance of book then that instance 
is of course an item. 

B.2 Supertypes, Subtypes AND Relationships 

If a supertype participates in a relationship then all of its subtypes 
also participate in that relationship. We say that a supertype’s 
relationships are inherited by its subtypes. The converse is not true: 
if the model specifies specifically that a subtype participates in a 
relationship, then its siblings (other entity types that are subtypes 
of the same supertype) and its supertype do not participate in that 
relationship. 

As an example, consider that members can borrow items (i.e. any 

Appendix B: Supertypes and Subtypes  |  251



item of any type) from the library but only books have authors. Our 
model can be extended as follows: 

This model excludes the database from storing an author of a 
magazine or that a video has an author, but the model allows videos, 
magazines, and books to be borrowed by members. 

B.3 Supertypes, Subtypes and Attributes 

All entity types including supertypes and subtypes can have 
attributes. Continuing with our library example suppose: 

• All items have a call number and a title, and call number is a 
key (each item has a unique call number); 

• Videos have a duration (time required to play); 
• Books have a length (number of pages). 

Just as subtypes inherit relationships, they also inherit any 
attributes of their supertype. We also have know that supertypes 
do not inherit the attributes of their subtypes. Attributes that are 
common to a supertype and its subtypes are only shown at the 
supertype. Consider our model now: 

252  |  Appendix B: Supertypes and Subtypes



Our examples have been two-level hierarchies. In general, a 
hierarchy can be as many levels as the designer requires. For 
instance, books could be categorized as fiction and non-fiction and 
so book can be a subtype of item and at the same time a supertype 
of fiction and non-fiction. 

B.3.1 Discriminator Attributes 

It is common for designers to introduce or discover an attribute 
such that its value can be used to explicitly determine the subtype 
an entity belongs to. For example, the item entity type can have an 
attribute, say itemType, which can have a value from the domain 
{“video”, “magazine”, “book”}. When this is done, the diagram must 
include the attribute of course, but additionally the attribute is 
shown as a discriminator attribute for subtyping purposes and the 
pertinent value for discriminating shown as well. 

Below, you will see how these are laid out above and below the 
connection symbol. 

Appendix B: Supertypes and Subtypes  |  253



This works well for disjoint subtyping, but not necessarily for 
overlapping subtypes. When overlap is possible, a designer may 
include a discriminator for each subtype, and so there are as many 
discriminator attributes as there are subtypes. Typically, this is a 
boolean-valued attribute. In the overlapping case, we not show 
discriminating values on the diagram. 

B.4 Mapping Supertypes and Subtypes To A 
Relational Database 

In chapter 8, we covered rules to be used when an ERD is mapped 
to a relational database. In this section, we add rules for mapping 
supertypes and subtypes to relations. There are three basic options 
a designer considers when mapping these structures to a database: 

1. Create a relation for each entity type in the hierarchy. 
2. Create relations for only the bottom-most entity types. 
3. Create one relation to represent the whole hierarchy. 

We use two examples to exhibit the mapping options; one where 
total participation is specified for the supertype and the other 
where participation is optional. 

The previous library model is modified to show that an item can 
be out on loan to a member, and that one of the subtypes, video, is 
produced by a producer: 

254  |  Appendix B: Supertypes and Subtypes



A university model applies where a person may be a student and/
or an employee, and where students declare a major subject area: 

Regardless of the option selected for hierarchies, the rules for 
mapping an ERD to a relational database discussed previously 
(Chapter 8) still apply. We must apply rules regarding relationships 
and attributes consistently. For example, if any entity type in a 
hierarchy is involved in a one-to-many relationship we must ensure 
the proper use of foreign keys. 

B.4.1 Relations For All Entity Types 

With this option, each entity type in a hierarchy is represented by 
its own relation. Important points here are that 

• All relations representing entity types in the same hierarchy 
have the same primary key. 

• The primary key of a subtype relation will also be a foreign key 
that references its supertype relation. 

• Attributes of a supertype (except for the primary key) appear 
only in the relation that represents the supertype. 

Example:  The library model maps to the following relational design: 

Appendix B: Supertypes and Subtypes  |  255



Note the foreign keys: 

• Item has a foreign key referencing Member 
• Video has a foreign key referencing Producer 
• Each of Video, Book, and Magazine has a foreign key 

referencing Item. If a row exists in Video, Book, or Magazine 
then there must be a corresponding row in Item. 

The tables are shown here with sample data. Note that 

• Each row of Video, Book, and Magazine has a related row in 
Item 

• Some items are out on loan to a member 
• Each video has a producer 

In the relationships diagram, note the one-to-one relationships 
between the supertype relation and each of its subtype relations: 

256  |  Appendix B: Supertypes and Subtypes



Example: Now consider the university model. The relational 
design for this mapping option: 

Since subtyping is optional in the university model, there can be a 
row in Person with no corresponding row in Employee or Student. 
A person does not have to exist as one of the subtypes. 

Note the foreign keys: 

• Student has a foreign key referencing SubjectArea 
• Employee and Student have foreign keys referencing Person. If 

a row exists in Employee or Student then a corresponding row 
must exist in Person. 

We will now show tables with some sample data and the 
relationships diagram. 

A sample database is presented below. Note that person 2 is both 
a student and an employee, and that person 4 is neither a student 
nor an employee. 

Appendix B: Supertypes and Subtypes  |  257



In the relationships diagram, note the relationships are one-to-
one between the supertype relation and each of its subtype 
relations: 

B.4.2 Relations For Bottom-Most Entity Types 

In this case, relations are created for only entity types that are at 
the “bottom” of the hierarchy. There are no relations created for a 
supertype. Important points here are that 

• All relations derived from entity types in the same hierarchy 
will have the same primary key. 

• No primary key value can be repeated (We have not seen how 
to handle this in MS Access. Further study of relational systems 
can include techniques that automate the checking for this 
kind of integrity constraint.) 

• Attributes of a supertype must be included in each of its 
subtype relations. 

258  |  Appendix B: Supertypes and Subtypes



Example: For the library model and since there is total participation 
in subtyping, this option works well. Every item will be stored in a 
relation, and each item is stored exactly once. The resulting design: 

Note the foreign keys: 

• Because there is no Item relation, each of Video, Book, and 
Magazine have foreign keys referencing Member. 

• Video is the only relation with a foreign key referencing 
Producer. 

An issue the designer should be aware of is that callNumbers across 
the three relations must be unique (call number is the primary key 
of Item). Further study of database systems is needed to know how 
this rule can be enforced. 

It is left as an exercise for the student to create a database with 
sample data. 

Example: Consider the university model. This approach (creating 
relations for bottom-most entity types) is not suitable for the 
university model because of the overlapping subtypes and because 
the participation in subtyping is not total. Applying the option we 
have: 

If an entity exists in more than one subtype then such an entity 

Appendix B: Supertypes and Subtypes  |  259



will have data stored redundantly in the database. In the design 
above if a person is both an employee and a student then that 
person’s first and last names would be stored twice (in two different 
relations). 

The Employee and Student relations are not sufficient to store 
Person data. The participation is optional and so a person may exist 
who is neither an employee nor a student; in such a case the data 
for the person cannot be stored! 

It is left as an exercise for the student to create a database with 
sample data. 

B.4.3 One Relation Representing The Whole 
Hierarchy 

When this option is applied, one relation is created for a complete 
hierarchy. All attributes appearing in the hierarchy are placed in one 
relation. Note that the value of a discriminator attribute will enable 
the user to know easily the subtype of a particular entity. For our 
example models, when we map a hierarchy to a single relation we 
obtain very simple relational designs. 

It is left as an exercise for the student to create databases with 
sample data. 

Example: The library model maps to the following design 

In the Item relation, the itemType attribute indicates if the row 
represents a video, a magazine, or a book. The memberId may have 

260  |  Appendix B: Supertypes and Subtypes



a value if the item is out on loan. producerId can only have a value if 
itemType is “video”. 

Example: When mapping a hierarchy to a single relation for the 
university model, the designer should include discriminator 
attributes that are boolean-valued with one discriminator attribute 
per subtype. Applying this option to the university model we have: 

With this database, each person is stored at most once in the 
database. There is no duplicated data as with the previous mapping 
option. 

If a person is neither an employee nor a student then the only 
attributes that can have values are: personId, employeeFlag, 
studentFlag, first and last – the others must be null. The values of 
employeeFlag and studentFlag would be false. 

Exercises 

1. Consider the database designs illustrated in this appendix. 
Implement one or more of these and populate with data. 

2. Consider the two designs used in the examples of this 
appendix. Combine these two designs by replacing Member 
with the Person hierarchy. Illustrate the relational structures 
when the model is mapped to a database. Choose mapping 
options for the hierarchies. 

3. Consider the design you created in Exercise 2 but modify the 
one-to-many borrows relationship to be a many-to-many with 
attributes dateBorrowed and dateReturned where 
dateBorrowed is a discriminator for the relationship. Recall this 
discriminator is not the same as the discriminators suggested 

Appendix B: Supertypes and Subtypes  |  261



for mapping supertypes and subtypes.Note that this 
modification to the library example will allow history to be 
recorded for the borrowing of items. 

4. For Exercise 3, create the database and populate the database 
with sample data. 

5. Create an ERD for a service station business that provides 
goods and services to its customers. Typically, a customer 
comes in with their vehicle and requests certain work to be 
performed. For example a customer may request an oil change 
and for a new set of four tires to be provided and installed. 

The work items that can be performed or supplied can be of two 
types: a service (such as the oil change) and actual physical items 
(such as litres of oil). There will be several services that can be 
performed such as tire installation, changing oil, or fixing a flat tire. 
Each of these will have some cost to be charged to a customer. 
There are many concrete items that are supplied and charged to a 
customer such as fan belts, litres of oil, or tires – these are things 
that are kept in inventory. Consider creating a hierarchy for 
products (goods / services); make up reasonable attributes. 

This service station has customers that fall into two groups: some 
are private individuals and others are businesses. Individuals will 
have a first name, last name, address and phone number. A business 
will have a business name, address, phone number and a contact 
person who has a first name and last name. Consider creating a 
hierarchy for customers. 

The service station needs to keep track of all the goods and 
services it provides to its customers so that it has a historical record 
and knows what it has charged to each customer. Each visit to the 
service station by a customer will generate a work order that keeps 
track of the work that was done for the customer’s vehicle. Vehicles 
have license plate numbers, and other attributes to describe them 
(make, model, color, …). For each visit of a customer to the station, 
the system needs to know the date the visit occurred, the details of 

262  |  Appendix B: Supertypes and Subtypes



the work performed and goods provided, and the total charge to the 
customer. 

Appendix B: Supertypes and Subtypes  |  263


	Relational Databases
	Relational Databases
	Contents
	Introduction
	Ron McFadyen

	Preface
	Ron McFadyen
	Relational Databases and Microsoft Access
	Ron McFadyen
	Creating Tables
	Ron McFadyen
	Creating Forms
	Ron McFadyen
	Microsoft Access Queries
	Ron McFadyen
	Relationships and Relationship Tools
	Ron McFadyen
	Microsoft Access Queries – Advanced
	Ron McFadyen
	Entity Relationship Modeling
	Ron McFadyen
	Mapping an ERD to a Relational Database
	Ron McFadyen
	Data Definition Language (DDL)
	Ron McFadyen
	Normalization
	Ron McFadyen

	Appendix A: Forms Involving Multiple Tables
	Ron McFadyen

	Appendix B: Supertypes and Subtypes
	Ron McFadyen


